Due to the recent increase in Arctic shipping, 2006-2020 June to October Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP), Moderate Resolution Imaging Spectroradiometer (MODIS) Collection 6.1 (C6.1), and Mult...Due to the recent increase in Arctic shipping, 2006-2020 June to October Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP), Moderate Resolution Imaging Spectroradiometer (MODIS) Collection 6.1 (C6.1), and Multi-Angle Implementation of Atmospheric Correction (MAIAC) retrieved aerosol optical depth (AOD) data were examined for changes in AOD from period 1 (P1, 2006-2012) to period 2 (P2, 2014-2020 (P2). Herein, AOD was statistically analyzed on a 0.25° × 0.25° grid and in the airsheds over the various ocean basins over the Arctic north of 59.75°N. According to heatmaps of the correlation between AOD and ship traffic, and AOD and fire emissions for the airsheds, all three AOD products captured the observed inter-annual variability in wildfire occurrence well, and showed wildfire emissions over Siberia were more severe in P2 than P1. Except for the Atlantic, North, and Baltic Seas, Beaufort Sea, and Barents Sea, all three AOD products indicated that AOD was higher over the various basins in P2 than P1, but disagreed on the magnitude. This fact suggests that the detection of changes in the typical low AOD over the Arctic Ocean might be rather qualitative than quantitative. While all products captured increases in AOD due to ships at berth, only MODIS C6.1 caught the elevated AOD due to shipping on the Siberian rivers. Obviously, sub-daily resolutions are required to capture increased AOD due to short-term events like a traveling ship or short-interval fire.展开更多
The accuracy of the cloud-aerosol lidar with orthogonal polarization (CALIOP), moderate resolution imaging spectroradiometer (MODIS), Multi-Angle Implementation of Atmospheric Correction (MAIAC), and Geostationary Ope...The accuracy of the cloud-aerosol lidar with orthogonal polarization (CALIOP), moderate resolution imaging spectroradiometer (MODIS), Multi-Angle Implementation of Atmospheric Correction (MAIAC), and Geostationary Operational Environmental Satellite (GOES) aerosol optical depth (AOD) products for the Arctic north of 59.75°N was examined by means of 35 aerosol robotic network (AERONET) AOD sites. The assessment for June to October 2006 to 2020 showed MAIAC AOD agreed the best with AERONET AOD;CALIOP AOD differed the strongest from the AERONET AOD. Cross-correlations of CALIOP AOD along the satellite path indicated that AOD-values 40 km up-and-down the path often failed to represent the AERONET AOD-values within ±30 min of the overpass in this region dominated by easterly winds. Typically, CALIOP AOD was lower than AERONET AOD and MAIAC AOD at the sites, especially, at sites with mean AOD below 0.1. Generally, MODIS AOD values exceeded those of MAIAC. Comparison of CALIOP, MAIAC, and MODIS products resampled on a 0.25° × 0.25° grid revealed differences among the products caused by their temporal and spatial resolution, sample habit and size. Typically, the MODIS AOD-product showed the most details in AOD distribution. Despite differences in AOD-values, all products provided similar temporal evolution of elevated and lower AOD.展开更多
Based on slow- and fast-response measurements under neutral stratification conditions from a 325-m meteorological tower located in a built-up area of north-central Beijing as well as a descriptive survey of surface ro...Based on slow- and fast-response measurements under neutral stratification conditions from a 325-m meteorological tower located in a built-up area of north-central Beijing as well as a descriptive survey of surface roughness elements (i.e., buildings and trees) around the tower site, urban roughness lengths, zo, with zero-plane displacement height are estimated using logarithmic wind profile and morphometric methods in eight 45° directional sectors. When comparing their results with each other, the slow-response method tends to give smaller zo values. At a given location, considerable directional variations in values are observed. The effect of surface roughness on urban turbulence characteristics in terms of non-dimensional standard deviations of three-component velocity, σi/u*1 (where i = u, v, w and u*1 is local friction velocity), is investigated.展开更多
This paper summarizes the results of the researches on the middle and upper atmosphere obtained by Chinese scientists in 2008-2010.The focuses are specifically placed on the researches being associated with ground-bas...This paper summarizes the results of the researches on the middle and upper atmosphere obtained by Chinese scientists in 2008-2010.The focuses are specifically placed on the researches being associated with ground-based observation capability development,dynamical processes,the property of atmospheric circulation and the chemistry-climate coupling of the middle atmospheric layers.展开更多
Considering the differences between the Northeast China Cold Vortex (CV) and the Mid-Summer (MS) rainy period and their corresponding atmospheric circulations are comprehensively analyzed, and the objective identi...Considering the differences between the Northeast China Cold Vortex (CV) and the Mid-Summer (MS) rainy period and their corresponding atmospheric circulations are comprehensively analyzed, and the objective identification methods of defining the annual beginning and ending dates of Northeast China CV and MS rainy periods are developed respectively. The annual beginning date of the CV (MS) rainy period is as follows. In a period from April to August, if daily regional mean precipitation ryi is larger than yearly regional mean precipitation R (or 2R) on a certain day, the station precipitation rs is larger than the station yearly mean precipitation (r/ (or 2(r)) in at least 50% of stations in Northeast China, and this condition is satisfied in the following 2 (7) days, then this date is defined as the beginning date of the CV (MS) rainy period. While the definition of the ending date of the MS rainy period shows the opposite process to its beginning date. With this objective identification method, the multi-year average (1981-2010) beginning date of the CV rainy period is May 3, the beginning date of the MS rainy period is June 27, the ending day of the CV rainy period is defined as the day before the beginning date of the MS rainy period, and the ending date of the MS rainy period is August 29. Meanwhile, corresponding anomaly analysis at a 500-hPa geopotential height, 850-hPa wind, Omega and relative humidity fields all show that the definitions of the average beginning and ending dates of the CV and MS rainy periods have a certain circulation meaning. Furthermore, the daily evolution of the CV index, meridional and zonal wind index, etc. all show that these objectively defined beginning and ending dates of the CV and MS rainy periods have climate significance.展开更多
A climate network of extreme rainfall over eastern Asia is constructed for the period of 1971-2000, employing the tools of complex networks and a measure of nonlinear correlation called event synchronization (ES). U...A climate network of extreme rainfall over eastern Asia is constructed for the period of 1971-2000, employing the tools of complex networks and a measure of nonlinear correlation called event synchronization (ES). Using this network, we predict the extreme rainfall for several cases without delay and with n-day delay (1 ≤ n ≤ 10). The prediction accuracy can reach 58% without delay, 21% with 1-day delay, and 12% with n-day delay (2 ≤ n ≤ 10). The results reveal that the prediction accuracy is low in years of a weak east Asia summer monsoon (EASM) or 1 year later and high in years of a strong EASM or 1 year later. Furthermore, the prediction accuracy is higher due to the many more links that represent correlations between different grid points and a higher extreme rainfall rate during strong EASM years.展开更多
This feasibility study examined whether total backscatter and depolarization measurements from Cloud Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) in combination with sparse surface meteorolog...This feasibility study examined whether total backscatter and depolarization measurements from Cloud Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) in combination with sparse surface meteorological data and other information permitted qualitative assessment of simulated vertical and horizontal distributions of aerosols from wildfires over Interior Alaska. Comparisons between co-located WRF/Chem cross-sections and CALIPSO curtains showed temporal and spatial differences in smoke-plume height above ground, vertical and horizontal extension. Simple estimates of contributions of errors and processes elucidated that the different spatial and temporal resolution of model grid-cells and the lidar scan could provide offsets of the magnitude found in the comparison. The overestimation of 10 m wind speeds by on average 1.33 m·sǃ contributed to the offset. Energy estimates suggested that the energy needed for permafrost thawing may contribute to discrepancies between simulated and CALIPSO indicated plume height. A sensitivity study with lower emission rates showed similar features. The study demonstrated that use of CALIPSO data in combination with data from other sources than air-quality networks could serve for identification of potential model shortcomings by assessment of magnitudes of error and process impacts.展开更多
The wind power potential in Interior Alaska is evaluated from a micrometeorological perspective. Based on the local balance equation of momentum and the equation of continuity we derive the local balance equation of k...The wind power potential in Interior Alaska is evaluated from a micrometeorological perspective. Based on the local balance equation of momentum and the equation of continuity we derive the local balance equation of kinetic energy for macroscopic and turbulent systems, and in a further step, Bernoulli’s equation and integral equations that customarily serve as the key equations in momentum theory and blade-element analysis, where the Lanchester-Betz-Joukowsky limit, Glauert’s optimum actuator disk, and the results of the blade-element analysis by Okulov and Sorensen are exemplarily illustrated. The wind power potential at three different sites in Interior Alaska (Delta Junction, Eva Creek, and Poker Flat) is assessed by considering the results of wind field predictions for the winter period from October 1, 2008, to April 1, 2009 provided by the Weather Research and Forecasting (WRF) model to avoid time-consuming and expensive tall-tower observations in Interior Alaska which is characterized by a relatively low degree of infrastructure outside of the city of Fairbanks. To predict the average power output we use the Weibull distributions derived from the predicted wind fields for these three different sites and the power curves of five different propeller-type wind turbines with rated powers ranging from 2 MW to 2.5 MW. These power curves are represented by general logistic functions. The predicted power capacity for the Eva Creek site is compared with that of the Eva Creek wind farm established in 2012. The results of our predictions for the winter period 2008/2009 are nearly 20 percent lower than those of the Eva Creek wind farm for the period from January to September 2013.展开更多
Data from 456 surface meteorological sites in Alaska, eastern Russia and northwest Canada for 1979-2017 were used to model hourly universal thermal comfort indices (UTCIs) under consideration of Alaska-appropriate clo...Data from 456 surface meteorological sites in Alaska, eastern Russia and northwest Canada for 1979-2017 were used to model hourly universal thermal comfort indices (UTCIs) under consideration of Alaska-appropriate clothing. The results served to determine a high-resolution climatology of thermal comfort levels for Alaska at various temporal and spatial scales as well as the frequency of thermal stress levels. On 1979-2017 average, various degrees of cold stress occurred with highest percentage on the Alaska West Coast and along the Arctic Ocean. In the continental and Inside Passage region, no thermal stress had the highest percentage of occurrence. In Interior Alaska, both strong heat and extreme cold stress occurred occasionally. At most sites and in all Alaska Köppen-Geiger bio-climate regions, the absolute range between monthly means of daily minimum and maximum UTCIs was larger than that of monthly means of daily minimum and maximum air temperatures. Major contributors to thermal discomfort (shortwave radiation, air temperature, moisture, wind speed) varied among bio-climate regions and in the diurnal and annual courses.展开更多
A novel sewage-sludge derived composite material was developed for the adsorptive removal of organic pollutants from water. In this study a batch adsorption study was carried out to examine the kinetics of antibiotics...A novel sewage-sludge derived composite material was developed for the adsorptive removal of organic pollutants from water. In this study a batch adsorption study was carried out to examine the kinetics of antibiotics adsorption by this composite material. A pseudo-second order kinetics model fits the data extremely well, suggesting that chemical adsorption, rather than physical adsorption, is likely the main mechanism of the separation process.展开更多
Collocated data of the moderate resolution imaging spectroradiometer (MO<span style="font-family:Verdana;">-</span><span style="font-family:Verdana;">DIS) Collection 6.1 aerosol o...Collocated data of the moderate resolution imaging spectroradiometer (MO<span style="font-family:Verdana;">-</span><span style="font-family:Verdana;">DIS) Collection 6.1 aerosol optical depths (AOD) at 3 km × 3 km north of 59.9</span><span style="font-family:Verdana;">°</span><span style="font-family:Verdana;">N over ocean were assessed at 550 nm by aerosol robotic network (AERONET) data from coastal sites and marine aerosol network (MAN) data from vessels during June to October 2006 to 2018. Typically, MODIS AOD w</span><span style="font-family:Verdana;">as</span><span style="font-family:Verdana;"> higher at low and lower at high values than the AERONET AOD. Discrepancies were largest for sites where the Earth’s surface around the site is very heterogeneous (Canadian Archipelago, coast of Greenland). Due to the higher likelihood for sea-ice, MAN and MODIS AOD differed stronger west of Greenland and over the Beaufort Sea than at location in the Greenland and Norwegian Seas and Atlantic. MODIS AOD well captured the inter-seasonal variability found in the AERONET AOD data (R = 0.933). At all sites, MO</span><span style="font-family:Verdana;">-</span><span style="font-family:Verdana;">DIS and AERONET AOD agreement improved as time progressed in the shipping season, hinting at errors in sea-ice vs. open water classification. Overall 75.3% of the MODIS AOD data fell within the limits of the error envelops of the AERONET/MAN AOD data with MAN ranging between 87.5% and 100%. Changes in both MODIS and AERONET mean AOD between two periods of same length (2006-2011, 2013-2018) were explainable by changes in emissions for all sites</span><span style="font-family:Verdana;">.</span>展开更多
Fifty years ago, Hans A. Panofsky published a paper entitled Determination of stress from wind and temperature measurements. In his famous paper, he presented a new profile function for the mean horizontal wind speed ...Fifty years ago, Hans A. Panofsky published a paper entitled Determination of stress from wind and temperature measurements. In his famous paper, he presented a new profile function for the mean horizontal wind speed under the condition of diabatic stratification that includes his integral similarity function. With his integral similarity function, he opened the door for Monin-Obukhov scaling in a wide range of micrometeorological and microclimatological applications. In a historic survey ranging from the sixties of the past century down to the present days, we present integral similarity functions for momentum, sensible heat, and water vapor for both unstable and stable stratification, where on the one hand free convection condition and on the other hand strongly stable stratification are addressed.展开更多
Near-surface PM2.5 and meteorological observations were performed in three rural communities in the high latitude Yukon Flats valley at various times during the cold season (October to April). These data were synthesi...Near-surface PM2.5 and meteorological observations were performed in three rural communities in the high latitude Yukon Flats valley at various times during the cold season (October to April). These data were synthesized with data from other meteorological sites, NCEP reanalysis and MAIAC retrieved aerosol optical depths data to analyze the role of mesoscale processes and radiation on air quality. Under weak large-scale forcing mountain-valley circulations develop that are driven by the differences in insolation. During the long dark nights, radiative cooling occurs in the near-surface layer of the mountain slopes of the Brooks, Ogilvie and White Mountains Ranges and at the bottom of the valley. Here surface-based inversions (SBI)—known as roof-top inversions—forms, while the cold air drains from the slopes. A frontal wedge forms when the cold air slides over the relatively colder air in the valley. Drainage of cold air from the Brooks Range governed the circulation and cold air pooling in the valley. Concentrations during times with and without SBI differed significantly (at 95% confidence) at two sites indicating that local emissions were the major contributor. At the site, which is closest to the mountains, concentrations marginally changed in the presence of inversions. At all sites, 24-h mean PM2.5 remained below the National Ambient Air Quality Standard.展开更多
This study investigated the uncertainty assessing wind-power production in valleys of complex terrain using Juneau, Alaska as the testbed. The wind-speed data stem from evaluated WRF/Chem simulations for seven tourist...This study investigated the uncertainty assessing wind-power production in valleys of complex terrain using Juneau, Alaska as the testbed. The wind-speed data stem from evaluated WRF/Chem simulations for seven tourist seasons (May 15 to September 15). The percentage of wind speeds between cut-in and cutout speed differed up to about 11% among tourist seasons and up to 15% among the examined wind-turbine types. The wind-speed probability density varied the strongest among tourist seasons for wind speeds less than 3 m·sǃ (6 m·sǃ) for wind turbines with hub heights of about 80 m (30 m). At these heights, the interannual differences in the probability density of wind speeds at the rated or higher power were about half or less than those at wind speeds below 3 m·sǃ (6 m·sǃ). The predicted average power output notably differed among tourist seasons. The tall (small) turbines had their highest predicted average production in 2006 (2012). The ranking among wind turbines regarding the predicted average power production was independent of the interannual variability in average power production. Capacity factors differed about 8% (6%) for the tall (small) tubines among tourist seasons. Within the same tourist season, capacity factors differed about 8% (5%) among turbine types. Estimates of capacity and potential power derived from 10 m wind-speed observations by an empirical formula commonly used to estimate wind speeds at hub height, differed up to 40% for 80 m height for some turbine types. Determinating the exponent of the empirical equation by means of WRF/Chem data showed that the traditional empirical approach failed in complex terrain.展开更多
This case study examined how well downscaling of Community Earth System Model (CESM) data can reproduce climatological conditions relevant for summer (JJA) air quality in Glacier Bay National Park. Climatology was det...This case study examined how well downscaling of Community Earth System Model (CESM) data can reproduce climatological conditions relevant for summer (JJA) air quality in Glacier Bay National Park. Climatology was determined from the meteorological results obtained by the Weather Research and Forecasting model inline coupled with chemistry (WRF-chem) when driven with CESM data of 2006-2012. The climatology of this experiment (EXP) was evaluated by climatology from gridded blended sea-wind speeds, CRU data, and 42 surface meteorology sites. The quality relative to known performance was assessed by comparison to climatology determined from WRF-chem control simulations driven with FNL analysis data (CON) in forecast mode. Compared to observations, the thermodynamic and dynamic performances of EXP showed similar shortcomings (dampened diurnal temperature range, overestimation of wind speed over land) as CON. Over water EXP wind-speed climatology JJA bias (simulated minus observed) was -0.7 m/s. With respect to the CRU data EXP biases in JJA 2m temperature, diurnal temperature range, relative humidity and accumulated precipitation were -1.1 K, -4.9 K, 13%, and 110 mm, respectively. The slightly warmer atmosphere in EXP compensated for deficiencies in the cloud schemes leading to better results for the number of wet days and accumulated precipitation than in CON. Downscaling captured known mesoscale responses important for regional climate in a similar way as CON. When using CESM forcing, lateral boundary effects expanded spatially farther into the domain than known for forcing by analysis data. Overall, climatologies obtained from downscaling for Southeast Alaska had similar skill than those derived from forecasts driven by analysis data.展开更多
Evaluated Weather Research and Forecasting model inline with chemistry (WRF/Chem) simulations of the 2009 Crazy Mountain Complex wildfire in Interior Alaska served as a testbed for typical Alaska wildfire-smoke condit...Evaluated Weather Research and Forecasting model inline with chemistry (WRF/Chem) simulations of the 2009 Crazy Mountain Complex wildfire in Interior Alaska served as a testbed for typical Alaska wildfire-smoke conditions. A virtual unmanned air vehicle (UAV) sampled temperatures, dewpoint temperatures, primary inert and reactive gases and particular matter of different sizes as well as secondary pollutants from the WRF/Chem results using different sampling patterns, altitudes and speeds to investigate the impact of the sampling design on obtained mean distributions. In this experimental design, the WRF/Chem data served as the “grand truth” to assess the mean distributions from sampling. During frontal passage, the obtained mean distributions were sensitive to the flight patterns, speeds and heights. For inert constituents mean distributions from sampling agreed with the “grand truth” within a factor of two at 1000 m. Mean distributions of gases involved in photochemistry differed among flight patterns except for ozone. The diurnal cycle of these gases’ concentrations led to overestimation (underestimation) of 20 h means in areas of high (low) concentrations as compared to the “grand truth.” The mean ozone distribution was sensitive to the speed of the virtual UAV. Particulate matter showed the strongest sensitivity to the flight patterns, especially during precipitation.展开更多
The characteristics and climatology of funnel clouds in Alaska were examined using operational radiosondes, surface meteorological observations, and reanalysis data. Funnel clouds occurred under weak synoptic forcing ...The characteristics and climatology of funnel clouds in Alaska were examined using operational radiosondes, surface meteorological observations, and reanalysis data. Funnel clouds occurred under weak synoptic forcing between May and September between 11 am and 6 pm Alaska Daylight Time with a maximum occurrence in July. They occurred under Convective Available Potential Energy >500 J·kg-1 and strong low-level wind shear. Characteristic atmospheric profiles during funnel cloud events served to develop a retrieval algorithm based on similarity testing. Out of more than 129,000 soundings between 1971 and 2014, 2724, 442, and 744 profiles were similar to the profiles of observed funnel cloud events in the Interior, Alaska West Coast, and Anchorage regions. While the number of reported funnel clouds has increased since 2000, the frequency of synoptic situations favorable for such events has decreased.展开更多
Mainly.three methods have been developed to calculate turbulence heat flux.They are eddy covariance method,Bowen ratio/energy balance method and aerodynamic method.In this paper, all the three methods have been used t...Mainly.three methods have been developed to calculate turbulence heat flux.They are eddy covariance method,Bowen ratio/energy balance method and aerodynamic method.In this paper, all the three methods have been used to calculate sensible heat flux,latent heat flux and imbalance energy near the surface with the experiment data of EBEX-2000.Then comparisons of the three methods and some possible explanations of the surface imbalance energy are given.展开更多
文摘Due to the recent increase in Arctic shipping, 2006-2020 June to October Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP), Moderate Resolution Imaging Spectroradiometer (MODIS) Collection 6.1 (C6.1), and Multi-Angle Implementation of Atmospheric Correction (MAIAC) retrieved aerosol optical depth (AOD) data were examined for changes in AOD from period 1 (P1, 2006-2012) to period 2 (P2, 2014-2020 (P2). Herein, AOD was statistically analyzed on a 0.25° × 0.25° grid and in the airsheds over the various ocean basins over the Arctic north of 59.75°N. According to heatmaps of the correlation between AOD and ship traffic, and AOD and fire emissions for the airsheds, all three AOD products captured the observed inter-annual variability in wildfire occurrence well, and showed wildfire emissions over Siberia were more severe in P2 than P1. Except for the Atlantic, North, and Baltic Seas, Beaufort Sea, and Barents Sea, all three AOD products indicated that AOD was higher over the various basins in P2 than P1, but disagreed on the magnitude. This fact suggests that the detection of changes in the typical low AOD over the Arctic Ocean might be rather qualitative than quantitative. While all products captured increases in AOD due to ships at berth, only MODIS C6.1 caught the elevated AOD due to shipping on the Siberian rivers. Obviously, sub-daily resolutions are required to capture increased AOD due to short-term events like a traveling ship or short-interval fire.
文摘The accuracy of the cloud-aerosol lidar with orthogonal polarization (CALIOP), moderate resolution imaging spectroradiometer (MODIS), Multi-Angle Implementation of Atmospheric Correction (MAIAC), and Geostationary Operational Environmental Satellite (GOES) aerosol optical depth (AOD) products for the Arctic north of 59.75°N was examined by means of 35 aerosol robotic network (AERONET) AOD sites. The assessment for June to October 2006 to 2020 showed MAIAC AOD agreed the best with AERONET AOD;CALIOP AOD differed the strongest from the AERONET AOD. Cross-correlations of CALIOP AOD along the satellite path indicated that AOD-values 40 km up-and-down the path often failed to represent the AERONET AOD-values within ±30 min of the overpass in this region dominated by easterly winds. Typically, CALIOP AOD was lower than AERONET AOD and MAIAC AOD at the sites, especially, at sites with mean AOD below 0.1. Generally, MODIS AOD values exceeded those of MAIAC. Comparison of CALIOP, MAIAC, and MODIS products resampled on a 0.25° × 0.25° grid revealed differences among the products caused by their temporal and spatial resolution, sample habit and size. Typically, the MODIS AOD-product showed the most details in AOD distribution. Despite differences in AOD-values, all products provided similar temporal evolution of elevated and lower AOD.
文摘Based on slow- and fast-response measurements under neutral stratification conditions from a 325-m meteorological tower located in a built-up area of north-central Beijing as well as a descriptive survey of surface roughness elements (i.e., buildings and trees) around the tower site, urban roughness lengths, zo, with zero-plane displacement height are estimated using logarithmic wind profile and morphometric methods in eight 45° directional sectors. When comparing their results with each other, the slow-response method tends to give smaller zo values. At a given location, considerable directional variations in values are observed. The effect of surface roughness on urban turbulence characteristics in terms of non-dimensional standard deviations of three-component velocity, σi/u*1 (where i = u, v, w and u*1 is local friction velocity), is investigated.
基金Supported by the National Natural Sciences Foundation of China under grant (40830102,40333034)the Knowledge Innovation Project of Chinese Academy of Sciences under Grant (KZCX2-YW-123)
文摘This paper summarizes the results of the researches on the middle and upper atmosphere obtained by Chinese scientists in 2008-2010.The focuses are specifically placed on the researches being associated with ground-based observation capability development,dynamical processes,the property of atmospheric circulation and the chemistry-climate coupling of the middle atmospheric layers.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.41205040 and 41375078)the State Key Development Program for Basic Research,China(Grant No.2012CB955203)the Special Scientific Research Project for Public Interest(Grant No.GYHY201306021)
文摘Considering the differences between the Northeast China Cold Vortex (CV) and the Mid-Summer (MS) rainy period and their corresponding atmospheric circulations are comprehensively analyzed, and the objective identification methods of defining the annual beginning and ending dates of Northeast China CV and MS rainy periods are developed respectively. The annual beginning date of the CV (MS) rainy period is as follows. In a period from April to August, if daily regional mean precipitation ryi is larger than yearly regional mean precipitation R (or 2R) on a certain day, the station precipitation rs is larger than the station yearly mean precipitation (r/ (or 2(r)) in at least 50% of stations in Northeast China, and this condition is satisfied in the following 2 (7) days, then this date is defined as the beginning date of the CV (MS) rainy period. While the definition of the ending date of the MS rainy period shows the opposite process to its beginning date. With this objective identification method, the multi-year average (1981-2010) beginning date of the CV rainy period is May 3, the beginning date of the MS rainy period is June 27, the ending day of the CV rainy period is defined as the day before the beginning date of the MS rainy period, and the ending date of the MS rainy period is August 29. Meanwhile, corresponding anomaly analysis at a 500-hPa geopotential height, 850-hPa wind, Omega and relative humidity fields all show that the definitions of the average beginning and ending dates of the CV and MS rainy periods have a certain circulation meaning. Furthermore, the daily evolution of the CV index, meridional and zonal wind index, etc. all show that these objectively defined beginning and ending dates of the CV and MS rainy periods have climate significance.
基金Project supported by the National Natural Science Foundation of China(Grant No.41205040)the National Basic Research Program of China(Grant Nos.2012CB955203 and 2012CB955902)the Special Scientific Research Project for Public Interest,China(Grant No.GYHY201306021)
文摘A climate network of extreme rainfall over eastern Asia is constructed for the period of 1971-2000, employing the tools of complex networks and a measure of nonlinear correlation called event synchronization (ES). Using this network, we predict the extreme rainfall for several cases without delay and with n-day delay (1 ≤ n ≤ 10). The prediction accuracy can reach 58% without delay, 21% with 1-day delay, and 12% with n-day delay (2 ≤ n ≤ 10). The results reveal that the prediction accuracy is low in years of a weak east Asia summer monsoon (EASM) or 1 year later and high in years of a strong EASM or 1 year later. Furthermore, the prediction accuracy is higher due to the many more links that represent correlations between different grid points and a higher extreme rainfall rate during strong EASM years.
基金The National Aeronautics and Space Administration provided funding(grant number:NASA-NNX11AQ27A).
文摘This feasibility study examined whether total backscatter and depolarization measurements from Cloud Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) in combination with sparse surface meteorological data and other information permitted qualitative assessment of simulated vertical and horizontal distributions of aerosols from wildfires over Interior Alaska. Comparisons between co-located WRF/Chem cross-sections and CALIPSO curtains showed temporal and spatial differences in smoke-plume height above ground, vertical and horizontal extension. Simple estimates of contributions of errors and processes elucidated that the different spatial and temporal resolution of model grid-cells and the lidar scan could provide offsets of the magnitude found in the comparison. The overestimation of 10 m wind speeds by on average 1.33 m·sǃ contributed to the offset. Energy estimates suggested that the energy needed for permafrost thawing may contribute to discrepancies between simulated and CALIPSO indicated plume height. A sensitivity study with lower emission rates showed similar features. The study demonstrated that use of CALIPSO data in combination with data from other sources than air-quality networks could serve for identification of potential model shortcomings by assessment of magnitudes of error and process impacts.
基金the National Science Foundation for funding the project work of Megan Hinzman and Samuel Smock in summer 2011Hannah K.Ross and John Cooney in summer 2012 through the Research Experience for Undergraduates(REU)Program,grant number AGS1005265the Alaska Department of Labor for funding Dr.Gary Sellhorst’s project work
文摘The wind power potential in Interior Alaska is evaluated from a micrometeorological perspective. Based on the local balance equation of momentum and the equation of continuity we derive the local balance equation of kinetic energy for macroscopic and turbulent systems, and in a further step, Bernoulli’s equation and integral equations that customarily serve as the key equations in momentum theory and blade-element analysis, where the Lanchester-Betz-Joukowsky limit, Glauert’s optimum actuator disk, and the results of the blade-element analysis by Okulov and Sorensen are exemplarily illustrated. The wind power potential at three different sites in Interior Alaska (Delta Junction, Eva Creek, and Poker Flat) is assessed by considering the results of wind field predictions for the winter period from October 1, 2008, to April 1, 2009 provided by the Weather Research and Forecasting (WRF) model to avoid time-consuming and expensive tall-tower observations in Interior Alaska which is characterized by a relatively low degree of infrastructure outside of the city of Fairbanks. To predict the average power output we use the Weibull distributions derived from the predicted wind fields for these three different sites and the power curves of five different propeller-type wind turbines with rated powers ranging from 2 MW to 2.5 MW. These power curves are represented by general logistic functions. The predicted power capacity for the Eva Creek site is compared with that of the Eva Creek wind farm established in 2012. The results of our predictions for the winter period 2008/2009 are nearly 20 percent lower than those of the Eva Creek wind farm for the period from January to September 2013.
文摘Data from 456 surface meteorological sites in Alaska, eastern Russia and northwest Canada for 1979-2017 were used to model hourly universal thermal comfort indices (UTCIs) under consideration of Alaska-appropriate clothing. The results served to determine a high-resolution climatology of thermal comfort levels for Alaska at various temporal and spatial scales as well as the frequency of thermal stress levels. On 1979-2017 average, various degrees of cold stress occurred with highest percentage on the Alaska West Coast and along the Arctic Ocean. In the continental and Inside Passage region, no thermal stress had the highest percentage of occurrence. In Interior Alaska, both strong heat and extreme cold stress occurred occasionally. At most sites and in all Alaska Köppen-Geiger bio-climate regions, the absolute range between monthly means of daily minimum and maximum UTCIs was larger than that of monthly means of daily minimum and maximum air temperatures. Major contributors to thermal discomfort (shortwave radiation, air temperature, moisture, wind speed) varied among bio-climate regions and in the diurnal and annual courses.
文摘A novel sewage-sludge derived composite material was developed for the adsorptive removal of organic pollutants from water. In this study a batch adsorption study was carried out to examine the kinetics of antibiotics adsorption by this composite material. A pseudo-second order kinetics model fits the data extremely well, suggesting that chemical adsorption, rather than physical adsorption, is likely the main mechanism of the separation process.
文摘Collocated data of the moderate resolution imaging spectroradiometer (MO<span style="font-family:Verdana;">-</span><span style="font-family:Verdana;">DIS) Collection 6.1 aerosol optical depths (AOD) at 3 km × 3 km north of 59.9</span><span style="font-family:Verdana;">°</span><span style="font-family:Verdana;">N over ocean were assessed at 550 nm by aerosol robotic network (AERONET) data from coastal sites and marine aerosol network (MAN) data from vessels during June to October 2006 to 2018. Typically, MODIS AOD w</span><span style="font-family:Verdana;">as</span><span style="font-family:Verdana;"> higher at low and lower at high values than the AERONET AOD. Discrepancies were largest for sites where the Earth’s surface around the site is very heterogeneous (Canadian Archipelago, coast of Greenland). Due to the higher likelihood for sea-ice, MAN and MODIS AOD differed stronger west of Greenland and over the Beaufort Sea than at location in the Greenland and Norwegian Seas and Atlantic. MODIS AOD well captured the inter-seasonal variability found in the AERONET AOD data (R = 0.933). At all sites, MO</span><span style="font-family:Verdana;">-</span><span style="font-family:Verdana;">DIS and AERONET AOD agreement improved as time progressed in the shipping season, hinting at errors in sea-ice vs. open water classification. Overall 75.3% of the MODIS AOD data fell within the limits of the error envelops of the AERONET/MAN AOD data with MAN ranging between 87.5% and 100%. Changes in both MODIS and AERONET mean AOD between two periods of same length (2006-2011, 2013-2018) were explainable by changes in emissions for all sites</span><span style="font-family:Verdana;">.</span>
基金the National Science Foundation for funding Dillon Amaya’s project work in summer 2012 through the Research Experience for Undergraduates(REU)Program,grant AGS1005265
文摘Fifty years ago, Hans A. Panofsky published a paper entitled Determination of stress from wind and temperature measurements. In his famous paper, he presented a new profile function for the mean horizontal wind speed under the condition of diabatic stratification that includes his integral similarity function. With his integral similarity function, he opened the door for Monin-Obukhov scaling in a wide range of micrometeorological and microclimatological applications. In a historic survey ranging from the sixties of the past century down to the present days, we present integral similarity functions for momentum, sensible heat, and water vapor for both unstable and stable stratification, where on the one hand free convection condition and on the other hand strongly stable stratification are addressed.
基金the Tribal Resilience Program,NASA grant#80NSSC19K0981 and the State of Alaska for financial support of this study
文摘Near-surface PM2.5 and meteorological observations were performed in three rural communities in the high latitude Yukon Flats valley at various times during the cold season (October to April). These data were synthesized with data from other meteorological sites, NCEP reanalysis and MAIAC retrieved aerosol optical depths data to analyze the role of mesoscale processes and radiation on air quality. Under weak large-scale forcing mountain-valley circulations develop that are driven by the differences in insolation. During the long dark nights, radiative cooling occurs in the near-surface layer of the mountain slopes of the Brooks, Ogilvie and White Mountains Ranges and at the bottom of the valley. Here surface-based inversions (SBI)—known as roof-top inversions—forms, while the cold air drains from the slopes. A frontal wedge forms when the cold air slides over the relatively colder air in the valley. Drainage of cold air from the Brooks Range governed the circulation and cold air pooling in the valley. Concentrations during times with and without SBI differed significantly (at 95% confidence) at two sites indicating that local emissions were the major contributor. At the site, which is closest to the mountains, concentrations marginally changed in the presence of inversions. At all sites, 24-h mean PM2.5 remained below the National Ambient Air Quality Standard.
文摘This study investigated the uncertainty assessing wind-power production in valleys of complex terrain using Juneau, Alaska as the testbed. The wind-speed data stem from evaluated WRF/Chem simulations for seven tourist seasons (May 15 to September 15). The percentage of wind speeds between cut-in and cutout speed differed up to about 11% among tourist seasons and up to 15% among the examined wind-turbine types. The wind-speed probability density varied the strongest among tourist seasons for wind speeds less than 3 m·sǃ (6 m·sǃ) for wind turbines with hub heights of about 80 m (30 m). At these heights, the interannual differences in the probability density of wind speeds at the rated or higher power were about half or less than those at wind speeds below 3 m·sǃ (6 m·sǃ). The predicted average power output notably differed among tourist seasons. The tall (small) turbines had their highest predicted average production in 2006 (2012). The ranking among wind turbines regarding the predicted average power production was independent of the interannual variability in average power production. Capacity factors differed about 8% (6%) for the tall (small) tubines among tourist seasons. Within the same tourist season, capacity factors differed about 8% (5%) among turbine types. Estimates of capacity and potential power derived from 10 m wind-speed observations by an empirical formula commonly used to estimate wind speeds at hub height, differed up to 40% for 80 m height for some turbine types. Determinating the exponent of the empirical equation by means of WRF/Chem data showed that the traditional empirical approach failed in complex terrain.
基金the University of Alaska Fairbanks’Geophysical Institute’s supercomupting center for computational and the National Parks Service for financial support(contract P11AT30883/P11AC90465).
文摘This case study examined how well downscaling of Community Earth System Model (CESM) data can reproduce climatological conditions relevant for summer (JJA) air quality in Glacier Bay National Park. Climatology was determined from the meteorological results obtained by the Weather Research and Forecasting model inline coupled with chemistry (WRF-chem) when driven with CESM data of 2006-2012. The climatology of this experiment (EXP) was evaluated by climatology from gridded blended sea-wind speeds, CRU data, and 42 surface meteorology sites. The quality relative to known performance was assessed by comparison to climatology determined from WRF-chem control simulations driven with FNL analysis data (CON) in forecast mode. Compared to observations, the thermodynamic and dynamic performances of EXP showed similar shortcomings (dampened diurnal temperature range, overestimation of wind speed over land) as CON. Over water EXP wind-speed climatology JJA bias (simulated minus observed) was -0.7 m/s. With respect to the CRU data EXP biases in JJA 2m temperature, diurnal temperature range, relative humidity and accumulated precipitation were -1.1 K, -4.9 K, 13%, and 110 mm, respectively. The slightly warmer atmosphere in EXP compensated for deficiencies in the cloud schemes leading to better results for the number of wet days and accumulated precipitation than in CON. Downscaling captured known mesoscale responses important for regional climate in a similar way as CON. When using CESM forcing, lateral boundary effects expanded spatially farther into the domain than known for forcing by analysis data. Overall, climatologies obtained from downscaling for Southeast Alaska had similar skill than those derived from forecasts driven by analysis data.
基金The National Aeronautics and Space Administration provided funding(Grant NASA-NNX11AQ27A).
文摘Evaluated Weather Research and Forecasting model inline with chemistry (WRF/Chem) simulations of the 2009 Crazy Mountain Complex wildfire in Interior Alaska served as a testbed for typical Alaska wildfire-smoke conditions. A virtual unmanned air vehicle (UAV) sampled temperatures, dewpoint temperatures, primary inert and reactive gases and particular matter of different sizes as well as secondary pollutants from the WRF/Chem results using different sampling patterns, altitudes and speeds to investigate the impact of the sampling design on obtained mean distributions. In this experimental design, the WRF/Chem data served as the “grand truth” to assess the mean distributions from sampling. During frontal passage, the obtained mean distributions were sensitive to the flight patterns, speeds and heights. For inert constituents mean distributions from sampling agreed with the “grand truth” within a factor of two at 1000 m. Mean distributions of gases involved in photochemistry differed among flight patterns except for ozone. The diurnal cycle of these gases’ concentrations led to overestimation (underestimation) of 20 h means in areas of high (low) concentrations as compared to the “grand truth.” The mean ozone distribution was sensitive to the speed of the virtual UAV. Particulate matter showed the strongest sensitivity to the flight patterns, especially during precipitation.
基金the National Science Foundation(NSF),the SOARS program,the Gwichyaa Zhee Gwich’in Tribal Government,and SLOAN for financial support.
文摘The characteristics and climatology of funnel clouds in Alaska were examined using operational radiosondes, surface meteorological observations, and reanalysis data. Funnel clouds occurred under weak synoptic forcing between May and September between 11 am and 6 pm Alaska Daylight Time with a maximum occurrence in July. They occurred under Convective Available Potential Energy >500 J·kg-1 and strong low-level wind shear. Characteristic atmospheric profiles during funnel cloud events served to develop a retrieval algorithm based on similarity testing. Out of more than 129,000 soundings between 1971 and 2014, 2724, 442, and 744 profiles were similar to the profiles of observed funnel cloud events in the Interior, Alaska West Coast, and Anchorage regions. While the number of reported funnel clouds has increased since 2000, the frequency of synoptic situations favorable for such events has decreased.
基金National Natural Science Foundation of China Grant 40275004City University of Hong Kong Grant 8780046+1 种基金the City University of Hong Kong Strategic Research Grant 7001038State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry
文摘Mainly.three methods have been developed to calculate turbulence heat flux.They are eddy covariance method,Bowen ratio/energy balance method and aerodynamic method.In this paper, all the three methods have been used to calculate sensible heat flux,latent heat flux and imbalance energy near the surface with the experiment data of EBEX-2000.Then comparisons of the three methods and some possible explanations of the surface imbalance energy are given.