期刊文献+
共找到22篇文章
< 1 2 >
每页显示 20 50 100
Numerical Prediction of Symmetric Water Impact Loads on Wedge Shaped Hull Form Using CFD 被引量:1
1
作者 Ahmed Swidan Walid Amin +2 位作者 Dev Ranmuthugala Giles Thomas Irene Penesis 《World Journal of Mechanics》 2013年第8期311-318,共8页
Over the past two decades high-speed vessels have extended their service areas from protected waters to the open ocean where frequent and large water impacts can result in structural damage. The accurate prediction of... Over the past two decades high-speed vessels have extended their service areas from protected waters to the open ocean where frequent and large water impacts can result in structural damage. The accurate prediction of slamming loads, and their consequences on light-weight high-speed vessels, is an essential element of efficient structural design. The aim of this work is to understand and accurately predict the behavior and local slam loads of quasi-2D wedge shaped hull forms impacting water. The computed results, using finite-volume Computational Fluid Dynamics (CFD), are validated against drop test experimental data and compared to a previously published numerical simulation using Smoothed Particle Hydrodynamics (SPH). The CFD results show good agreement with the experimental measurements. 展开更多
关键词 COMPUTATIONAL Fluid Dynamics SLAMMING DROP Test
下载PDF
Experimental Investigation of the Small-scale Fixed Multi-chamber OWC Device
2
作者 Mohammad Shalby Ahmed Elhanafi +4 位作者 Paul Walker David G.Dorrell Ahmad Salah Mohamed R.Gomaa Mohamed Behiri 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2021年第5期408-421,共14页
Sea wave energy generators or converters(WECs)have the potential to become a viable technology for clean,renewable energy production.Among the WEC technologies,the oscillating water columns(OWCs)are the most common WE... Sea wave energy generators or converters(WECs)have the potential to become a viable technology for clean,renewable energy production.Among the WEC technologies,the oscillating water columns(OWCs)are the most common WEC devices studied.These have been studied and developed over many years.Multi-chamber oscillating water columns(MC-OWC)have the potential to have a higher energy conversion when extracting energy in mixed sea states than single-chamber devices.In the work reported in this paper,physical experiments are carried under regular wave conditions to test the wave power extraction of a fixed MC-OWC small-scale model.The Power Take-Off(PTO)of the device is simulated using orifice plates.The flow characteristics through these orifices are pre-calibrated such that the extracted power can be obtained only using the pressure measurement.Wave condition effects on the damping of the PTO of the device power extraction are addressed.The test results illustrate that the PTO system damping is critical and affects device performance. 展开更多
关键词 cean wave energy Energy conversion Oscillating water column Multi-chamber OWC
下载PDF
Experimental Modelling of Transverse Oscillations in Aquaculture Netting Parallel to the Flow – Sounds Baffling
3
作者 Andrew JOHNSON Cheslav BALASH 《China Ocean Engineering》 SCIE EI CSCD 2015年第3期391-400,共10页
Numerous studies have been undertaken to improve the viability, durability and suitability of materials and methods used for aquaculture enclosures. While many of the previous studies considered macro-deformation of n... Numerous studies have been undertaken to improve the viability, durability and suitability of materials and methods used for aquaculture enclosures. While many of the previous studies considered macro-deformation of nets, there is a paucity of information on netting micro-deformation. When aquaculture pens are towed, industry operators have observed the motion described as "baffling" – the transverse oscillation of the net planes parallel and near parallel to the flow. The difficulty to observe and assess baffling motion in a controlled experimental environment is to sufficiently reproduce netting boundary conditions and the flow environment experienced at sea. The focus of the present study was to develop and assess experimental methods for visualisation and quantification of these transverse oscillations. Four netrig configurations with varied boundary conditions and model-netting properties were tested in a flume tank. While the Reynolds number was not equivalent to full-scale, usage of the pliable and fine mesh model netting that enabled baffling to develop at low flow velocities was deemed to be of a larger relevance to this initial study. Baffling was observed in the testing frame that constrained the net sheet on the leading edge, similarly to a flag attachment onto a pole. Baffling motion increased the hydrodynamic drag of the net by 35%–58% when compared to the previously developed formula for taut net sheets aligned parallel to the flow. Furthermore, it was found that the drag due to baffling decreased with the increasing velocity over the studied Reynolds numbers(below 200); and the drag coefficient was non-linear for Reynolds numbers below 120. It is hypothesised that baffling motion is initially propagated by vortex shedding of the netting twine which causes the netting to oscillate; there after the restoring force causes unstable pressure differences on each side of the netting which excites the amplitude of the netting oscillations. 展开更多
关键词 aquaculture pen baffling model net testing netting drag netting micro-deformation
下载PDF
海洋鱼类分割加工废弃物的综合利用 被引量:12
4
作者 黄东雨 陈海光 Felicia kow 《广东农业科学》 CAS CSCD 北大核心 2009年第9期144-148,共5页
在海洋鱼类分割加工过程中会产生大量的加工废弃物,其重量可占原料鱼的20%~70%。综述了海洋鱼类分割加工所产生的鱼头、鱼骨、鱼皮、内脏等废弃物的综合利用技术研究状况,提出海洋鱼类废弃物综合利用技术应用前景。
关键词 海洋鱼类:废弃物:综合利用
下载PDF
Online AUV Path Replanning Using Quantum-Behaved Particle Swarm Optimization with Selective Differential Evolution 被引量:1
5
作者 Hui Sheng Lim Christopher K.H.Chin +1 位作者 Shuhong Chai Neil Bose 《Computer Modeling in Engineering & Sciences》 SCIE EI 2020年第10期33-50,共18页
This paper presents an online AUV(autonomous underwater vehicle)path planner that employs path replanning approach and the SDEQPSO(selective differential evolution-hybridized quantum-behaved particle swarm optimizatio... This paper presents an online AUV(autonomous underwater vehicle)path planner that employs path replanning approach and the SDEQPSO(selective differential evolution-hybridized quantum-behaved particle swarm optimization)algorithm to optimize an AUV mission conducted in an unknown,dynamic and cluttered ocean environment.The proposed path replanner considered the effect of ocean currents in path optimization to generate a Pareto-optimal path that guides the AUV to its target within minimum time.The optimization was based on the onboard sensor data measured from the environment,which consists of a priori unknown dynamic obstacles and spatiotemporal currents.Different sensor arrangements for the forward-looking sonar and horizontal acoustic Doppler current profiler(H-ADCP)were considered in 2D and 3D simulations.Based on the simulation results,the SDEQPSO path replanner was found to be capable of generating a time-optimal path that offered up to 13%reduction in travel time compared to the situation where the vehicle simply followed a path with the shortest distance.The proposed replanning technique also showed consistently better performance over a reactive path planner in terms of solution quality,stability,and computational efficiency.Robustness of the replanner was verified under stochastic process using the Monte Carlo method.The generated path fulfilled the vehicle’s safety and physical constraints,while intelligently exploiting ocean currents to improve the vehicle’s efficiency. 展开更多
关键词 Autonomous underwater vehicle path planning particle swarm optimization sonar detection Monte Carlo methods
下载PDF
护卫舰横摇稳定舵的H∞/H2控制器的设计和比较(英文)
6
作者 Yuanyuan Wang Hung Duc Nguyen 《Journal of Marine Science and Application》 CSCD 2019年第4期510-521,共12页
The roll motions of ships advancing in heavy seas have severe impacts on the safety of crews,vessels,and cargoes;thus,it must be damped.This study presents the design of a rudder roll damping autopilot by utilizing th... The roll motions of ships advancing in heavy seas have severe impacts on the safety of crews,vessels,and cargoes;thus,it must be damped.This study presents the design of a rudder roll damping autopilot by utilizing the dual extended Kalman filter(DEKF)trained radial basis function neural networks(RBFNN)for the surface vessels.The autopilot system constitutes the roll reduction controller and the yaw motion controller implemented in parallel.After analyzing the advantages of the DEKF-trained RBFNN control method theoretically,the ship’s nonlinear model with environmental disturbances was employed to verify the performance of the proposed stabilization system.Different sailing scenarios were conducted to investigate the motion responses of the ship in waves.The results demonstrate that the DEKF RBFNN based control system is efficient and practical in reducing roll motions and following the path for the ship sailing in waves only through rudder actions. 展开更多
关键词 Rudder roll damping AUTOPILOT Radial basis function Neural networks Dual extended Kalman filter training Intelligent control Path following Advancing in waves
下载PDF
一种改进的指令调节自适应控制器在无人水下航行器深度控制中的实验研究
7
作者 Charita D.Makavita Shantha G.Jayasinghe +1 位作者 Hung D.Nguyen Dev Ranmuthugala 《Journal of Marine Science and Application》 CSCD 2021年第3期504-523,共20页
Command governor–based adaptive control(CGAC)is a recent control strategy that has been explored as a possible candidate for the challenging task of precise maneuvering of unmanned underwater vehicles(UUVs)with param... Command governor–based adaptive control(CGAC)is a recent control strategy that has been explored as a possible candidate for the challenging task of precise maneuvering of unmanned underwater vehicles(UUVs)with parameter variations.CGAC is derived from standard model reference adaptive control(MRAC)by adding a command governor that guarantees acceptable transient performance without compromising stability and a command filter that improves the robustness against noise and time delay.Although simulation and experimental studies have shown substantial overall performance improvements of CGAC over MRAC for UUVs,it has also shown that the command filter leads to a marked reduction in initial tracking performance of CGAC.As a solution,this paper proposes the replacement of the command filter by a weight filter to improve the initial tracking performance without compromising robustness and the addition of a closed-loop state predictor to further improve the overall tracking performance.The new modified CGAC(M-CGAC)has been experimentally validated and the results indicate that it successfully mitigates the initial tracking performance reduction,significantly improves the overall tracking performance,uses less control force,and increases the robustness to noise and time delay.Thus,M-CGAC is a viable adaptive control algorithm for current and future UUV applications. 展开更多
关键词 Command governor adaptive control Measurement noise Time delay Transient tracking Unmanned underwater vehicles Robustness
下载PDF
Ice-Class Propeller Strength and Integrity Evaluation Using Unified Polar ClassURI3 Rules
8
作者 LI Qi LIU Pengfei 《Journal of Ocean University of China》 SCIE CAS CSCD 2021年第4期823-836,共14页
A systematic method was developed for ice-class propeller modeling,performance estimation,strength and integrity evaluation and optimization.To estimate the impact of sea ice on the propeller structure,URI3 rules,esta... A systematic method was developed for ice-class propeller modeling,performance estimation,strength and integrity evaluation and optimization.To estimate the impact of sea ice on the propeller structure,URI3 rules,established by the International Association of Classification Societies in 2007,were applied for ice loading calculations.An R-class propeller(a type of ice-class propeller)was utilized for subsequent investigations.The propeller modeling was simplified based on a conventional method,which expedited the model building process.The propeller performance was simulated using the computational fluid dynamics(CFD)method.The simulation results were validated by comparison with experimental data.Furthermore,the hydrodynamic pressure was transferred into a finite element analysis(FEA)module for strength assessment of ice-class propellers.According to URI3 rules,the ice loading was estimated based on different polar classes and working cases.Then,the FEA method was utilized to evaluate the propeller strength.The validation showed that the simulation results accorded with recent research results.Finally,an improved optimization method was developed to save the propeller constituent materials.The optimized propeller example had a minimum safety factor of 1.55,satisfying the safety factor requirement of≥1.5,and reduced the design volume to 88.2%of the original. 展开更多
关键词 polar class propeller URI3 rules propeller blade strength and integrity design and optimization ice-class propeller hydrodynamics-strength coupled
下载PDF
Tidal Heights in Hyper-Synchronous Estuaries
9
作者 Ian M. Kidd Shuhong Chai Andrew Fischer 《Natural Resources》 2014年第11期607-615,共9页
Inconsistencies between datasets are examined with reference to flood tidal elevations in the Tamar River estuary, Tasmania Australia. Errors in a 30-year-old commonly cited dataset have been perpetuated in subsequent... Inconsistencies between datasets are examined with reference to flood tidal elevations in the Tamar River estuary, Tasmania Australia. Errors in a 30-year-old commonly cited dataset have been perpetuated in subsequent publications and datasets, and a clarification is herein provided. Elevation of the flood tidal wave as it propagates the estuary is evident in mean tide level and mean sea level, although the analysis is compromised by the temporal differences of the datasets. As sea levels rise due to global warming, the importance of accurate on-going sea level data in any estuary will become more acute. 展开更多
关键词 Height DATUM Mean SEA LEVEL Mean TIDE LEVEL Estuary Digital Elevation Model Global WARMING SEA LEVEL Rise
下载PDF
Numerical investigation into water entry problems of a flat plate with air pockets
10
作者 Casey O’Connor Saeed Mohajernasab Nagi Abdussamie 《Journal of Ocean Engineering and Science》 SCIE 2023年第4期386-400,共15页
Computational Fluid Dynamics(CFD)investigations into water entry problems of a rigid flat plate with air pockets were systematically conducted.The Volume of Fluid(VOF)model was utilised to capture localised slamming p... Computational Fluid Dynamics(CFD)investigations into water entry problems of a rigid flat plate with air pockets were systematically conducted.The Volume of Fluid(VOF)model was utilised to capture localised slamming phenomena that occur during,and post-impact events.The model’s geometry was modified to include a pocket on the slamming impact surface to investigate the effect of air entrapment on the magnitude and distribution of slamming forces and pressures.A parametric study was conducted on the geometric parameters of the modelled pocket by altering its area,depth,and volume to exam-ine the response of slamming force and pressure loading under several impact velocities.The numerical results of slamming forces and pressures were in good agreement with experimental drop test measure-ments(with relative error of-6%and 7%for the magnitude of slamming force and pressure,respectively).The numerical results proved that the peak pressure is proportional to the magnitude of impact velocity squared(p maxαv^(2)). 展开更多
关键词 Marine structures SLAMMING Air entrapment Computationalfluid dynamics Drop tests
原文传递
Prediction of regular wave loads on a fixed offshore oscillating water column-wave energy converter using CFD 被引量:5
11
作者 Ahmed Elhanafi 《Journal of Ocean Engineering and Science》 SCIE 2016年第4期268-283,共16页
In this paper,hydrodynamic wave loads on an offshore stationary-floating oscillating water column(OWC)are investigated via a 2D and 3D computational fluid dynamics(CFD)modeling based on the RANS equations and the VOF ... In this paper,hydrodynamic wave loads on an offshore stationary-floating oscillating water column(OWC)are investigated via a 2D and 3D computational fluid dynamics(CFD)modeling based on the RANS equations and the VOF surface capturing scheme.The CFD model is validated against previous experiments for nonlinear regular wave interactions with a surface-piercing stationary barge.Following the validation stage,the numerical model is modified to consider the pneumatic damping effect,and an extensive campaign of numerical tests is carried out to study the wave-OWC interactions for different wave periods,wave heights and pneumatic damping factors.It is found that the horizontal wave force is usually larger than the vertical one.Also,there a direct relationship between the pneumatic and hydrodynamic vertical forces with a maximum vertical force almost at the device natural frequency,whereas the pneumatic damping has a little effect on the horizontal force.Additionally,simulating the turbine damping with an orifice plate induces higher vertical loads than utilizing a slot opening.Furthermore,3D modeling significantly escalates and declines the predicted hydrodynamic vertical and horizontal wave loads,respectively. 展开更多
关键词 Offshore oscillating water column OWC Hydrodynamic wave loads Numerical wave tank CFD 3D effects
原文传递
Risk assessment of LNG and FLNG vessels during manoeuvring in open sea 被引量:3
12
作者 Nagi Abdussamie Mohamed Daboos +2 位作者 Ismail Elferjani Chai Shuhong Abdusalam Alaktiwi 《Journal of Ocean Engineering and Science》 SCIE 2018年第1期56-66,共11页
Manoeuvring of a Liquefied Natural Gas(LNG)carrier in open sea at Floating LNG(FLNG)terminals can be associated with several operational risks of potential consequences to human safety,the environment and economy.In t... Manoeuvring of a Liquefied Natural Gas(LNG)carrier in open sea at Floating LNG(FLNG)terminals can be associated with several operational risks of potential consequences to human safety,the environment and economy.In this paper,a fuzzy set approach was developed to handle the uncertainty in expert opinions commonly used for qualitative risk assessment studies such as the risk matrix.Risk parameters were modelled using a number of fuzzy sets,and a fuzzy risk value was calculated for several hazardous scenarios at different phases during ship berthing operations.The calculated fuzzy risk values were found to be consistent with the results of the risk matrix technique.©2017 Shanghai Jiaotong University.Published by Elsevier B.V. 展开更多
关键词 Offshore gas export Floating gas terminals Hazards during ship manoeuvring Fuzzy logic
原文传递
Investigation of a ship resonance through numerical simulation 被引量:1
13
作者 S.S.Kianejad Hossein Enshaei +1 位作者 Jonathan Duffy Nazanin Ansarifard 《Journal of Hydrodynamics》 SCIE EI CSCD 2020年第5期969-983,共15页
Understanding dynamic stability of a ship on a resonance frequency is important because comparatively smaller external forces and moments generate larger motions.The roll motion is most susceptible because of smaller ... Understanding dynamic stability of a ship on a resonance frequency is important because comparatively smaller external forces and moments generate larger motions.The roll motion is most susceptible because of smaller restoring moments.Most studies related to the failure modes such as parametric roll and dead ship condition,identified by second generation of intact stability criteria(SGISC)are performed at a resonance frequency.However,the nature of resonance,where the model experiences an incremental roll motion,has not been well understood.In this study,nonlinear unsteady computational fluid dynamics(CFD)simulations were conducted to investigate the resonance phenomenon using a containership under a sinusoidal roll exciting moment.To capture the complexity of the phenomenon,simulations were conducted over a range of frequencies to cover the resonance frequency including lower and higher amplitudes.In addition to the resonance frequency,the phase shift between roll exciting moment and roll angle,as well as the phase difference between acceleration and roll angle,were found to have significant effects on the occurrence of resonance. 展开更多
关键词 RESONANCE harmonic excited roll motion natural frequency phase shift phase difference
原文传递
The response of a semisubmersible model under focused wave groups: Experimental investigation 被引量:1
14
作者 Michael Banks Nagi Abdussamie 《Journal of Ocean Engineering and Science》 SCIE 2017年第3期161-171,共11页
In recent years,extreme wave events have occurred more frequently than have been predicted using theoretical methods.It is,therefore,a requirement to investigate the impact of these events on coastal and offshore stru... In recent years,extreme wave events have occurred more frequently than have been predicted using theoretical methods.It is,therefore,a requirement to investigate the impact of these events on coastal and offshore structures.This paper reports on results of an experimental investigation into the interaction between unidirectional waves and a horizontally moored semisubmersible model.The target crest height was created at a focal point and time using the focused wave technique.Different values of wave steepness were tested in order to ascertain the nonlinear effects on the quality of waves generated by a piston-type wavemaker.The measured crest height was in good agreement with the theoretical one within 4%relative error.The magnitudes of heave and pitch motions of the model were found to increase as the wave steepness increased.Overall,the paper contributes towards establishing the application of focused wave technique to floating offshore platforms. 展开更多
关键词 Focused wave Offshore platforms Dynamic response
原文传递
Dynamic System Identification of Underwater Vehicles Using Multi-output Gaussian Processes
15
作者 Wilmer Ariza Ramirez Jus Kocijan +2 位作者 Zhi Quan Leong Hung Duc Nguyen Shantha Gamini Jayasinghe 《International Journal of Automation and computing》 EI CSCD 2021年第5期681-693,共13页
Non-parametric system identification with Gaussian processes for underwater vehicles is explored in this research with the purpose of modelling autonomous underwater vehicle(AUV) dynamics with a low amount of data. Mu... Non-parametric system identification with Gaussian processes for underwater vehicles is explored in this research with the purpose of modelling autonomous underwater vehicle(AUV) dynamics with a low amount of data. Multi-output Gaussian processes and their aptitude for modelling the dynamic system of an underactuated AUV without losing the relationships between tied outputs are used. The simulation of a first-principle model of a Remus 100 AUV is employed to capture data for the training and validation of the multi-output Gaussian processes. The metric and required procedure to carry out multi-output Gaussian processes for AUV with 6 degrees of freedom(DoF) is also shown in this paper. Multi-output Gaussian processes compared with the popular technique of recurrent neural network show that multi-output Gaussian processes manage to surpass RNN for non-parametric dynamic system identification in underwater vehicles with highly coupled DoF with the added benefit of providing the measurement of confidence. 展开更多
关键词 Dependent Gaussian processes dynamic system identification multi-output Gaussian processes non-parametric identification autonomous underwater vehicle(AUV)
原文传递
Generation of rogue waves at model scale
16
作者 Bailey Groves Nagi Abdussamie 《Journal of Ocean Engineering and Science》 SCIE 2019年第2期100-112,共13页
The study of rogue waves is becoming increasingly important,as the offshore oil and gas,as well as renewable energy industries,expand.The unpredictability of such disastrous waves poses a significant risk to floating ... The study of rogue waves is becoming increasingly important,as the offshore oil and gas,as well as renewable energy industries,expand.The unpredictability of such disastrous waves poses a significant risk to floating and fixed structures,making it necessary to develop methods capable of recreating rogue waves for model testing purposes.In this paper,an investigation into the useability of the NewWave theory,a theoretical formula for producing focused waves,was conducted in model test facilities with a wavemaker.The numerical modelling of rogue waves was performed using MATLAB codes developed to create several types of wave packets.The success of the numerical generation of design rogue waves was dependent on the number of wave components used during construction such that a suitable rogue wave(H max/H s>2.0)could be created using 400 or more components.It was found that the NewWave technique could construct and physically generate design rogue waves within a close range of the predicted height provided the main wavemaker stroke was smooth enough(at around 0.8 s trough-crest for the tested model scale).The measured rogue waves were found to be complex;highly non-linear in amplitude with the behaviour of up to the 3rd order.Furthermore,it was observed that rogue waves,created based on a 100-year sea state,were very similar to the New Year Wave confirming that such extreme waves,approximately 25-27 m high at full scale,can indeed occur in severe sea states. 展开更多
关键词 Rogue waves Numerical modelling Design rogue waves Model testing New Year Wave
原文传递
A comparison between Smoothed-Particle Hydrodynamics and RANS Volume of Fluid method in modelling slamming
17
作者 Marcus Sasson Shuhong Chai +2 位作者 Genevieve Beck Yuting Jin Jalal Rafieshahraki 《Journal of Ocean Engineering and Science》 SCIE 2016年第2期119-128,共10页
The oil and gas industry requires complex subsea infrastructure in order to develop offshore oil and gas fields.Upon installation,these components may encounter high slamming loads,stemming from impact with the water ... The oil and gas industry requires complex subsea infrastructure in order to develop offshore oil and gas fields.Upon installation,these components may encounter high slamming loads,stemming from impact with the water surface.This paper utilises two different numerical methods,the mesh-free Smoothed Particle Hydrodynamics(SPH)approach and Reynolds Averaged Navier-Stokes(RANS)Volume of Fluid(VOF)method to quantify these loads on a free-falling object.The investigation is also interested in conducting a parameter study and determining the effect of varying simulation parameters on the prediction of slamming event kinematics and forces.The surface impact of a freefalling wedge was introduced as a case study and has been simulated using SPH and RANS,with the results being compared to an experimental investigation.It was found from the SPH simulations that particle resolution and the size of the SPH particle kernel are very important,whilst the diffusion term does not play an important role.The latter is due to the very transient nature of slamming events,which do not allow sufficient time for diffusion in the fluid domain.For the RANS simulations,motion of the wedge was achieved using the overset grid technique,whereby varying the discretising time step was found to have a pronounced impact on the accuracy of the captured slamming event.Through analysing the numerical data,one can observe that the RANS results correlate slightly better with the experimental data as opposed to that obtained from the SPH modelling.However,considering the robustness and quick set up of the SPH simulations,both of these two numerical approaches are considered to be promising tools for modelling more complicated slamming problems,including those potentially involving more intricate structures. 展开更多
关键词 Smoothed Particle Hydrodynamics Reynolds Averaged Navier-Stokes Slamming load WEDGE
原文传递
Development of current-induced scour beneath elevated subsea pipelines
18
作者 Jun Y.Lee Alexander L.Forrest +3 位作者 Fauzi A.Hardjanto Shuhong Chai Remo Cossu Zhi Q.Leong 《Journal of Ocean Engineering and Science》 SCIE 2018年第4期265-281,共17页
When scour occurs beneath a subsea pipeline and develops to a certain extent,the pipeline may experience vortex-induced vibrations,through which there can be a potential accumulation of fatigue damage.However,when a p... When scour occurs beneath a subsea pipeline and develops to a certain extent,the pipeline may experience vortex-induced vibrations,through which there can be a potential accumulation of fatigue damage.However,when a pipeline is laid on an uneven seabed,certain sections may have an elevation with respect to the far-field seabed,e o,at which the development of scour would vary.This work focused on predicting the development of the scour depth beneath subsea pipelines with an elevation under steady flow conditions.A range of pipe elevation-to-diameter ratios(i.e.0≤e o/D≤0.5)have been considered for laboratory experiments conducted in a sediment flume.The corresponding equilibrium scour depths and scour time scales were obtained;experimental data from published literature have been collected and added to the present study to produce a more complete analysis database.The correlation between existing empirical equations for predicting the time scale and the experimental data was assessed,resulting in a new set of constants.A new manner of converting the scour time scale into a non-dimensional form was found to aid the empirical equations in attaining a better correlation to the experimental data.Subsequently,a new empirical equation has also been proposed in this work,which accounts for the influence of e o/D on the non-dimensional scour time scale.It was found to have the best overall correlation with the experimental data.Finally,full-scale predictions of the seabed gaps and time scales were made for the Tasmanian Gas Pipeline(TGP). 展开更多
关键词 Scour time scale Equilibrium scour depth Subsea pipelines Pipe elevation Steady currents.
原文传递
Predicting scour beneath subsea pipelines from existing small free span depths under steady currents 被引量:2
19
作者 Jun Y.Lee Jasmin McInerney +2 位作者 Remo Cossu Zhi Q.Leong Alexander L.Forrest 《Journal of Ocean Engineering and Science》 SCIE 2017年第2期61-75,共15页
An equation was developed to predict current-induced scour beneath subsea pipelines in areas with small span depths,S.Current equations for scour prediction are only applicable to partially buried pipelines.The existe... An equation was developed to predict current-induced scour beneath subsea pipelines in areas with small span depths,S.Current equations for scour prediction are only applicable to partially buried pipelines.The existence of small span depths(i.e.S/D<0.3)are of concern because the capacity for scour is higher at smaller span depths.Furthermore,it is impractical to perform rectification works,such as installing grout bags,under a pipeline with a small S/D.Full-scale two-dimensional computational fluid dynamics(CFD)simulations were performed using the Reynolds-averaged Navier-Stokes approach and the Shear stress transport k-ωturbulence model.To predict the occurrence of scour,the computed maximum bed shear stress beneath the pipe was converted to the dimensionless Shields parameter,and compared with the critical Shields parameter based on the mean sediment grain size.The numerical setup was verified,and a good agreement was found between model-scale CFD data and experimental data.Field data were obtained to determine the mean grain size,far field current velocity and to measure the span depths along the surveyed pipe length.A trend line equation was fitted to the full-scale CFD data,whereby the maximum Shields parameter beneath the pipe can be calculated based on the undisturbed Shields parameter and S/D. 展开更多
关键词 Sediment scour Subsea pipelines Small span depths Steady currents
原文传递
Data fusion and machine learning for ship fuel efficiency modeling:Part Ⅱ-Voyage report data,AIS data and meteorological data
20
作者 Yuquan Du Yanyu Chen +2 位作者 Xiaohe Li Alessandro Schonborn Zhuo Sun 《Communications in Transportation Research》 2022年第1期222-243,共22页
When voyage report data is utilized as the main data source for ship fuel efficiency analysis,its information on weather and sea conditions is often regarded as unreliable.To solve this issue,this study approaches AIS... When voyage report data is utilized as the main data source for ship fuel efficiency analysis,its information on weather and sea conditions is often regarded as unreliable.To solve this issue,this study approaches AIS data to obtain the ship's actual detailed geographical positions along its sailing trajectory and then further retrieve the weather and sea condition information from publicly accessible meteorological data sources.These more reliable data about weather and sea conditions the ship sails through is fused into voyage report data in order to improve the accuracy of ship fuel consumption rate models.Eight 8100-TEU to 14,000-TEU containerships from a global shipping company were used in experiments.For each ship,nine datasets were constructed based on data fusion and eleven widely-adopted machine learning models were tested.Experimental results revealed the benefits of fusing voyage report data,AIS data,and meteorological data in improving the fit performances of machine learning models of forecasting ship fuel consumption rate.Over the best datasets,the performances of several decision tree-based models are promising,including Extremely randomized trees(ET),AdaBoost(AB),Gradient Tree Boosting(GB)and XGBoost(XG).With the best datasets,their R^(2) values over the training sets are all above 0.96 and mostly reach the level of 0.99-1.00,while their R^(2) values over the test sets are in the range from 0.75 to 0.90.Fit errors of ET,AB,GB,and XG on daily bunker fuel consumption,measured by RMSE and MAE,are usually between 0.8 and 4.5 ton/day.These results are slightly better than our previous study,which confirms the benefits of adopting the actual geographical positions of the ship recorded by AIS data,compared with the estimated geographical positions derived from the great circle route,in retrieving weather and sea conditions the ship sails through. 展开更多
关键词 Ship fuel efficiency Fuel consumption rate Voyage report AIS Data fusion Machine learning
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部