期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Experimental Investigation of Separation and Transition Processes on a High-Lift Low-Pressure Turbine Profile Under Steady and Unsteady Inflow at Low Reynolds Number 被引量:9
1
作者 Satta F Simoni D +2 位作者 Ubaldi M Zunino P Bertini F 《Journal of Thermal Science》 SCIE EI CAS CSCD 2010年第1期26-33,共8页
The effects induced by the presence of incoming wakes on the boundary layer developing over a high-lift low-pressure turbine profile have been investigated in a linear cascade at mid-span.The tested Reynolds number is... The effects induced by the presence of incoming wakes on the boundary layer developing over a high-lift low-pressure turbine profile have been investigated in a linear cascade at mid-span.The tested Reynolds number is 70000,typical of the cruise operating condition.The results of the investigations performed under steady and unsteady inflow conditions are analyzed.The unsteady investigations have been performed at the reduced frequency of f+=0.62,representative of the real engine operating condition.Profile aerodynamic loadings as well as boundary layer velocity profiles have been measured to survey the separation and transition processes.Spectral analysis has been also performed to better understand the phenomena associated with the transition process under steady inflow.For the unsteady case,a phase-locked ensemble averaging technique has been employed to reconstruct the time-resolved boundary layer velocity distributions from the hot-wire instantaneous signal output.The ensemble-averaging technique allowed a detailed analysis of the effects induced by incoming wakes-boundary layer interaction in separation suppression.Time-resolved results are presented in terms of mean velocity and unresolved unsteadiness time-space plots. 展开更多
关键词 boundary layer separation boundary layer transition wake-boundary layer interaction high-liftprofile low-pressure turbine
原文传递
Combined Experimental and Numerical Investigations on the Roughness Effects on the Aerodynamic Performances of LPT Blades 被引量:3
2
作者 Marco Berrino Fabio Bigoni +4 位作者 Daniele Simoni Matteo Giovannini Michele Marconcini Roberto Pacciani Francesco Bertini 《Journal of Thermal Science》 SCIE EI CAS CSCD 2016年第1期32-42,共11页
The aerodynamic performance of a high-load low-pressure turbine blade cascade has been analyzed for three different distributed surface roughness levels(Ra) for steady and unsteady inflows. Results from CFD simulation... The aerodynamic performance of a high-load low-pressure turbine blade cascade has been analyzed for three different distributed surface roughness levels(Ra) for steady and unsteady inflows. Results from CFD simulations and experiments are presented for two different Reynolds numbers(300000 and 70000 representative of take-off and cruise conditions, respectively) in order to evaluate the roughness effects for two typical operating conditions. Computational fluid dynamics has been used to support and interpret experimental results, analyzing in detail the flow field on the blade surface and evaluating the non-dimensional local roughness parameters, further contributing to understand how and where roughness have some influence on the aerodynamic performance of the blade. The total pressure distributions in the wake region have been measured by means of a five-hole miniaturized pressure probe for the different flow conditions, allowing the evaluation of profile losses and of their dependence on the surface finish, as well as a direct comparison with the simulations. Results reported in the paper clearly highlight that only at the highest Reynolds number tested(Re=300000) surface roughness have some influence on the blade performance, both for steady and unsteady incoming flows. In this flow condition profile losses grow as the surface roughness increases, while no appreciable variations have been found at the lowest Reynolds number. The boundary layer evolution and the wake structure have shown that this trend is due to a thickening of the suction side boundary layer associated to an anticipation of transition process. On the other side, no effects have been observed on the pressure side boundary layer. 展开更多
关键词 low-pressure turbine high-load profile roughness unsteady inflow CFD
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部