Glycogen serves as the principal energy reserve for metabolic processes in aquatic shellfish and substantially contributes to the flavor and quality of oysters.The Jinjiang oyster(Crassostrea ariakensis)is an economic...Glycogen serves as the principal energy reserve for metabolic processes in aquatic shellfish and substantially contributes to the flavor and quality of oysters.The Jinjiang oyster(Crassostrea ariakensis)is an economically and ecologically important species in China.In the present study,RNA sequencing(RNA-seq)and assay for transposase-accessible chromatin using sequencing(ATAC-seq)were performed to investigate gene expression and chromatin accessibility variations in oysters with different glycogen contents.Analysis identified 9483 differentially expressed genes(DEGs)and 7215 genes with significantly differential chromatin accessibility(DCAGs)were obtained,with an overlap of 2600 genes between them.Notably,a significant proportion of these genes were enriched in pathways related to glycogen metabolism,including“Glycogen metabolic process”and“Starch and sucrose metabolism”.In addition,genome-wide association study(GWAS)identified 526 single nucleotide polymorphism(SNP)loci associated with glycogen content.These loci corresponded to 241 genes,63 of which were categorized as both DEGs and DCAGs.This study enriches basic research data and provides insights into the molecular mechanisms underlying the regulation of glycogen metabolism in C.ariakensis.展开更多
A total of 10 specimens of Alcyonacea corals were collected at depths ranging from 905 m to 1633 m by the manned submersible Shenhai Yongshi during two cruises in the South China Sea(SCS).Based on mitochondrial genomi...A total of 10 specimens of Alcyonacea corals were collected at depths ranging from 905 m to 1633 m by the manned submersible Shenhai Yongshi during two cruises in the South China Sea(SCS).Based on mitochondrial genomic characteristics,morphological examination,and sclerite scanning electron microscopy,the samples were categorized into four suborders(Calcaxonia,Holaxonia,Scleraxonia,and Stolonifera),and identified as 9 possible new cold-water coral species.Assessments of GC-skew dissimilarity,phylogenetic distance,and average nucleotide identity(ANI)revealed a slow evolutionary rate for the octocoral mitochondrial sequences.The nonsynonymous(Ka)to synonymous(Ks)substitution ratio(Ka/Ks)suggested that the 14 protein-coding genes(PCGs)were under purifying selection,likely due to specific deep-sea environmental pressures.Correlation analysis of the median Ka/Ks values of five gene families and environmental factors indicated that the genes encoding cytochrome b(cyt b)and DNA mismatch repair protein(mutS)may be influenced by environmental factors in the context of deep-sea species formation.This study highlights the slow evolutionary pace and adaptive mechanisms of deep-sea corals.展开更多
Soil microbial communities are pivotal in permafrost biogeochemical cycles,yet the variations of abundant and rare microbial taxa and their impacts on greenhouse gas emissions in different seasons,remain elusive,espec...Soil microbial communities are pivotal in permafrost biogeochemical cycles,yet the variations of abundant and rare microbial taxa and their impacts on greenhouse gas emissions in different seasons,remain elusive,especially in the case of soil archaea.Here,we conducted a study on soil abundant and rare archaeal taxa during the growing and non-growing seasons in the active layer of alpine permafrost in the Qinghai-Tibetan Plateau.The results suggested that,for the archaeal communities in the sub-layer,abundant taxa exhibited higher diversity,while rare taxa maintained a more stable composition from the growing to non-growing season.Water soluble organic carbon and soil porosity were the most significant environmental variables affecting the compositions of abundant and rare taxa,respectively.Stochastic and deterministic processes dominated the assemblies of rare and abundant taxa,respectively.The archaeal ecological network influenced N_(2)O flux through different modules.Rare taxa performed an essential role in stabilizing the network and exerting important effects on N_(2)O flux.Our study provides a pioneering and comprehensive investigation aimed at unravelling the mechanisms by which archaea or other microorganisms influence greenhouse gas emissions in the alpine permafrost.展开更多
Objective This study was aimed at investigating the carrier rate of,and molecular variation in,α-andβ-globin gene mutations in Hunan Province.Methods We recruited 25,946 individuals attending premarital screening fr...Objective This study was aimed at investigating the carrier rate of,and molecular variation in,α-andβ-globin gene mutations in Hunan Province.Methods We recruited 25,946 individuals attending premarital screening from 42 districts and counties in all 14 cities of Hunan Province.Hematological screening was performed,and molecular parameters were assessed.Results The overall carrier rate of thalassemia was 7.1%,including 4.83%forα-thalassemia,2.15%forβ-thalassemia,and 0.12%for bothα-andβ-thalassemia.The highest carrier rate of thalassemia was in Yongzhou(14.57%).The most abundant genotype ofα-thalassemia andβ-thalassemia was-α^(3.7)/αα(50.23%)andβ^(IVS-Ⅱ-654)/β^(N)(28.23%),respectively.Fourα-globin mutations[CD108(ACC>AAC),CAP+29(G>C),Hb Agrinio and Hb Cervantes]and sixβ-globin mutations[CAP+8(C>T),IVS-Ⅱ-848(C>T),-56(G>C),beta nt-77(G>C),codon 20/21(-TGGA)and Hb Knossos]had not previously been identified in China.Furthermore,this study provides the first report of the carrier rates of abnormal hemoglobin variants andα-globin triplication in Hunan Province,which were 0.49%and 1.99%,respectively.Conclusion Our study demonstrates the high complexity and diversity of thalassemia gene mutations in the Hunan population.The results should facilitate genetic counselling and the prevention of severe thalassemia in this region.展开更多
RNA editing is a post-transcriptional process that alters the genetic information of mRNAs,so that the translated proteins deviate from those predicted by the genomic DNA templates.RNA editing occurs in a wide range o...RNA editing is a post-transcriptional process that alters the genetic information of mRNAs,so that the translated proteins deviate from those predicted by the genomic DNA templates.RNA editing occurs in a wide range of eukaryotes,including protists,multicellular animals,and land plants(Gray,2012;Ichinose and Sugita,2016).RNA editing in animals,dominated by A-to-I synonymous editing with low editing efficiency(20e30%),might play important roles in the regulation of gene expression(Wang et al.,2013).In contrast,RNA editing in plant organelles is usually nonsynonymous,affecting mostly the 2nd and 1st codon positions with very high editing efficiency(~80%).In plants,RNA editing is thought to affect plant phenotype and growth by restoring evolutionarily conserved amino acids and ensuring the correct folding of trans-membrane proteins on the respiratory chain complex(Sloan,2017).展开更多
Long COVID symptoms typically occur within 3 months of an initial COVID-19 infection,last for more than 2 months,and cannot be explained by other diagnoses.The most common symptoms include fatigue,dyspnea,coughing,and...Long COVID symptoms typically occur within 3 months of an initial COVID-19 infection,last for more than 2 months,and cannot be explained by other diagnoses.The most common symptoms include fatigue,dyspnea,coughing,and cognitive impairment.The mechanisms of long COVID are not fully understood,but several hypotheses have been put forth.These include coagulation and fibrosis pathway activation,inflammatory and autoimmune manifestations,persistent virus presence,and Epstein-Barr virus reactivation.Hyperbaric oxygen therapy(HBOT)is a therapeutic method in which a person inhales 100%oxygen under pressure greater than that of the atmosphere.HBOT has some therapeutic effects,including improvement of microcirculation,inhibition of cytokine release leading to a reduction in inflammatory responses,inhibition of autoimmune responses,and promotion of neurological repair.Several clinical trials have been carried out using HBOT to treat long COVID.The results suggest that HBOT helps to improve symptom severity,reduce symptom duration,and enhance patients’quality of life.It is believed that HBOT is an effective option for patients with long COVID,which is worth actively promoting.展开更多
Primates are highly successful mammals with significant morphological,behavioral,and physiological diversity.Studying the genomes of non-human primates,as the closest relative of humans,can provide insights into human...Primates are highly successful mammals with significant morphological,behavioral,and physiological diversity.Studying the genomes of non-human primates,as the closest relative of humans,can provide insights into human evolution,genetic structure,and potential drug targets relevant to human health,thus making important contributions to medical research.Additionally,primate genome research can support ecological balance and resource conservation and promote sustainable development and human well-being.Despite the existence of more than 500 primate species belonging to 80 genera and 16 families worldwide,with new species still being discovered in recent years(Fan et al.,2017;Khanal et al.,2021;Roos et al.,2020),genome sequencing efforts have been limited to a relatively small number of species from only 22 genera(Ensembl v103).Notably,approximately 72%of primate genera remain unsequenced,leading to significant knowledge gaps in our understanding of their evolutionary history.This situation presents considerable challenges for the development,utilization,and protection of primate genetic resources.It is for these compelling reasons that we initiated the Primate Genome Project(PGP)(Wu et al.,2022).展开更多
Chronic liver injury leads to progressive liver fibrosis and ultimately cirrhosis,a major cause of morbidity and mortality worldwide.However,there are currently no effective anti-fibrotic therapies available,especiall...Chronic liver injury leads to progressive liver fibrosis and ultimately cirrhosis,a major cause of morbidity and mortality worldwide.However,there are currently no effective anti-fibrotic therapies available,especially for latestage patients,which is partly attributed to the major knowledge gap regarding liver cell heterogeneity and cellspecific responses in different fibrosis stages.To reveal the multicellular networks regulating mammalian liver fibrosis from mild to severe phenotypes,we generated a single-nucleus transcriptomic atlas encompassing 49919nuclei corresponding to all main liver cell types at different stages of murine carbon tetrachloride(CCl_(4))-induced progressive liver fibrosis.Integrative analysis distinguished the sequential responses to injury of hepatocytes,hepatic stellate cells and endothelial cells.Moreover,we reconstructed the cell-cell interactions and gene regulatory networks implicated in these processes.These integrative analyses uncovered previously overlooked aspects of hepatocyte proliferation exhaustion and disrupted pericentral metabolic functions,dysfunction for clearance by apoptosis of activated hepatic stellate cells,accumulation of pro-fibrotic signals,and the switch from an anti-angiogenic to a pro-angiogenic program during CCl_(4)-induced progressive liver fibrosis.Our dataset thus constitutes a useful resource for understanding the molecular basis of progressive liver fibrosis using a relevant animal model.展开更多
基金supported by the National Key R&D Program of China(2022YFD2400105,2018YFD0900104)Central Publicinterest Scientific Institution Basal Research Fund,CAFS(2021XT0102,2023TD30)+2 种基金Marine S&T Fund of Shandong Province for Pilot National Laboratory for Marine Science and Technology(Qingdao)(2021QNLM050103)Key Research and Development Project of Shandong Province(2021LZGC028)National Marine Genetic Resource Center。
文摘Glycogen serves as the principal energy reserve for metabolic processes in aquatic shellfish and substantially contributes to the flavor and quality of oysters.The Jinjiang oyster(Crassostrea ariakensis)is an economically and ecologically important species in China.In the present study,RNA sequencing(RNA-seq)and assay for transposase-accessible chromatin using sequencing(ATAC-seq)were performed to investigate gene expression and chromatin accessibility variations in oysters with different glycogen contents.Analysis identified 9483 differentially expressed genes(DEGs)and 7215 genes with significantly differential chromatin accessibility(DCAGs)were obtained,with an overlap of 2600 genes between them.Notably,a significant proportion of these genes were enriched in pathways related to glycogen metabolism,including“Glycogen metabolic process”and“Starch and sucrose metabolism”.In addition,genome-wide association study(GWAS)identified 526 single nucleotide polymorphism(SNP)loci associated with glycogen content.These loci corresponded to 241 genes,63 of which were categorized as both DEGs and DCAGs.This study enriches basic research data and provides insights into the molecular mechanisms underlying the regulation of glycogen metabolism in C.ariakensis.
基金supported by the Marine S&T Fund of Shandong Province for Pilot National Laboratory for Marine Science and Technology(Qingdao)(No.2022QNLM030004)Hainan Science and Technology Department(ZDKJ2019011)+2 种基金Open Project Fund of Key Laboratory of Sustainable Development of Polar Fisheries,Ministry of Agriculture and Rural Affairs of PRC(2022OPF02)State Key R&D Project(2021YFF0502500)Qingdao Postdoctoral Applied Research Project(JZ2223j06100)。
文摘A total of 10 specimens of Alcyonacea corals were collected at depths ranging from 905 m to 1633 m by the manned submersible Shenhai Yongshi during two cruises in the South China Sea(SCS).Based on mitochondrial genomic characteristics,morphological examination,and sclerite scanning electron microscopy,the samples were categorized into four suborders(Calcaxonia,Holaxonia,Scleraxonia,and Stolonifera),and identified as 9 possible new cold-water coral species.Assessments of GC-skew dissimilarity,phylogenetic distance,and average nucleotide identity(ANI)revealed a slow evolutionary rate for the octocoral mitochondrial sequences.The nonsynonymous(Ka)to synonymous(Ks)substitution ratio(Ka/Ks)suggested that the 14 protein-coding genes(PCGs)were under purifying selection,likely due to specific deep-sea environmental pressures.Correlation analysis of the median Ka/Ks values of five gene families and environmental factors indicated that the genes encoding cytochrome b(cyt b)and DNA mismatch repair protein(mutS)may be influenced by environmental factors in the context of deep-sea species formation.This study highlights the slow evolutionary pace and adaptive mechanisms of deep-sea corals.
基金This work was supported by Gansu Provincial Science and Technology Program(22ZD6FA005)"Light of the West"Cross-team Project of the Chinese Academy of Sciences(xbzgzdsys-202214)+1 种基金the National Natural Science Foundation of China(41871064)Qinghai Province High-level Innovative"Thousand Talents"Program.
文摘Soil microbial communities are pivotal in permafrost biogeochemical cycles,yet the variations of abundant and rare microbial taxa and their impacts on greenhouse gas emissions in different seasons,remain elusive,especially in the case of soil archaea.Here,we conducted a study on soil abundant and rare archaeal taxa during the growing and non-growing seasons in the active layer of alpine permafrost in the Qinghai-Tibetan Plateau.The results suggested that,for the archaeal communities in the sub-layer,abundant taxa exhibited higher diversity,while rare taxa maintained a more stable composition from the growing to non-growing season.Water soluble organic carbon and soil porosity were the most significant environmental variables affecting the compositions of abundant and rare taxa,respectively.Stochastic and deterministic processes dominated the assemblies of rare and abundant taxa,respectively.The archaeal ecological network influenced N_(2)O flux through different modules.Rare taxa performed an essential role in stabilizing the network and exerting important effects on N_(2)O flux.Our study provides a pioneering and comprehensive investigation aimed at unravelling the mechanisms by which archaea or other microorganisms influence greenhouse gas emissions in the alpine permafrost.
基金supported by the National Key Research and Development Program of China[2021YFC1005300]the science and technology innovation Program of Hunan Province—Major Scientific and Technological Projects for Collaborative Prevention and Control of Birth Defects in Hunan Province[2019SK1010 and 2019SK1011]Hunan Province Clinical Medical Technology Innovation Guidance Project"Screening,prevention and control of single gene disease carriers and panel research in childbearing age people in Hunan Province"[2021SK50602].
文摘Objective This study was aimed at investigating the carrier rate of,and molecular variation in,α-andβ-globin gene mutations in Hunan Province.Methods We recruited 25,946 individuals attending premarital screening from 42 districts and counties in all 14 cities of Hunan Province.Hematological screening was performed,and molecular parameters were assessed.Results The overall carrier rate of thalassemia was 7.1%,including 4.83%forα-thalassemia,2.15%forβ-thalassemia,and 0.12%for bothα-andβ-thalassemia.The highest carrier rate of thalassemia was in Yongzhou(14.57%).The most abundant genotype ofα-thalassemia andβ-thalassemia was-α^(3.7)/αα(50.23%)andβ^(IVS-Ⅱ-654)/β^(N)(28.23%),respectively.Fourα-globin mutations[CD108(ACC>AAC),CAP+29(G>C),Hb Agrinio and Hb Cervantes]and sixβ-globin mutations[CAP+8(C>T),IVS-Ⅱ-848(C>T),-56(G>C),beta nt-77(G>C),codon 20/21(-TGGA)and Hb Knossos]had not previously been identified in China.Furthermore,this study provides the first report of the carrier rates of abnormal hemoglobin variants andα-globin triplication in Hunan Province,which were 0.49%and 1.99%,respectively.Conclusion Our study demonstrates the high complexity and diversity of thalassemia gene mutations in the Hunan population.The results should facilitate genetic counselling and the prevention of severe thalassemia in this region.
基金supported by the Shenzhen Urban Management Bureau Fund(No.202106 and 202302)Fairy Lake Science Fund(No.FLSF-2021-02).
文摘RNA editing is a post-transcriptional process that alters the genetic information of mRNAs,so that the translated proteins deviate from those predicted by the genomic DNA templates.RNA editing occurs in a wide range of eukaryotes,including protists,multicellular animals,and land plants(Gray,2012;Ichinose and Sugita,2016).RNA editing in animals,dominated by A-to-I synonymous editing with low editing efficiency(20e30%),might play important roles in the regulation of gene expression(Wang et al.,2013).In contrast,RNA editing in plant organelles is usually nonsynonymous,affecting mostly the 2nd and 1st codon positions with very high editing efficiency(~80%).In plants,RNA editing is thought to affect plant phenotype and growth by restoring evolutionarily conserved amino acids and ensuring the correct folding of trans-membrane proteins on the respiratory chain complex(Sloan,2017).
文摘Long COVID symptoms typically occur within 3 months of an initial COVID-19 infection,last for more than 2 months,and cannot be explained by other diagnoses.The most common symptoms include fatigue,dyspnea,coughing,and cognitive impairment.The mechanisms of long COVID are not fully understood,but several hypotheses have been put forth.These include coagulation and fibrosis pathway activation,inflammatory and autoimmune manifestations,persistent virus presence,and Epstein-Barr virus reactivation.Hyperbaric oxygen therapy(HBOT)is a therapeutic method in which a person inhales 100%oxygen under pressure greater than that of the atmosphere.HBOT has some therapeutic effects,including improvement of microcirculation,inhibition of cytokine release leading to a reduction in inflammatory responses,inhibition of autoimmune responses,and promotion of neurological repair.Several clinical trials have been carried out using HBOT to treat long COVID.The results suggest that HBOT helps to improve symptom severity,reduce symptom duration,and enhance patients’quality of life.It is believed that HBOT is an effective option for patients with long COVID,which is worth actively promoting.
文摘Primates are highly successful mammals with significant morphological,behavioral,and physiological diversity.Studying the genomes of non-human primates,as the closest relative of humans,can provide insights into human evolution,genetic structure,and potential drug targets relevant to human health,thus making important contributions to medical research.Additionally,primate genome research can support ecological balance and resource conservation and promote sustainable development and human well-being.Despite the existence of more than 500 primate species belonging to 80 genera and 16 families worldwide,with new species still being discovered in recent years(Fan et al.,2017;Khanal et al.,2021;Roos et al.,2020),genome sequencing efforts have been limited to a relatively small number of species from only 22 genera(Ensembl v103).Notably,approximately 72%of primate genera remain unsequenced,leading to significant knowledge gaps in our understanding of their evolutionary history.This situation presents considerable challenges for the development,utilization,and protection of primate genetic resources.It is for these compelling reasons that we initiated the Primate Genome Project(PGP)(Wu et al.,2022).
基金supported by the National Natural Science Foundation of China(32200688,92068106,U20A2015,32211530050)Guangdong Basic and Applied Basic Research Foundation(2021B1515120075,2021A1515110180)Science and Technology Program of Guangzhou(202201010408,202201011037)。
文摘Chronic liver injury leads to progressive liver fibrosis and ultimately cirrhosis,a major cause of morbidity and mortality worldwide.However,there are currently no effective anti-fibrotic therapies available,especially for latestage patients,which is partly attributed to the major knowledge gap regarding liver cell heterogeneity and cellspecific responses in different fibrosis stages.To reveal the multicellular networks regulating mammalian liver fibrosis from mild to severe phenotypes,we generated a single-nucleus transcriptomic atlas encompassing 49919nuclei corresponding to all main liver cell types at different stages of murine carbon tetrachloride(CCl_(4))-induced progressive liver fibrosis.Integrative analysis distinguished the sequential responses to injury of hepatocytes,hepatic stellate cells and endothelial cells.Moreover,we reconstructed the cell-cell interactions and gene regulatory networks implicated in these processes.These integrative analyses uncovered previously overlooked aspects of hepatocyte proliferation exhaustion and disrupted pericentral metabolic functions,dysfunction for clearance by apoptosis of activated hepatic stellate cells,accumulation of pro-fibrotic signals,and the switch from an anti-angiogenic to a pro-angiogenic program during CCl_(4)-induced progressive liver fibrosis.Our dataset thus constitutes a useful resource for understanding the molecular basis of progressive liver fibrosis using a relevant animal model.