The important component of the bio-photonic radiation is the bio-photonic solitons. Due to their existence, the bio-photonic radiation is different from ordinary electromagnetic radiation and has a very clear self-ind...The important component of the bio-photonic radiation is the bio-photonic solitons. Due to their existence, the bio-photonic radiation is different from ordinary electromagnetic radiation and has a very clear self-induced transparency. On the other hand, there are also various bio-solitons in DNA and proteins, which are manifested as various structural solitons such as kinks, or transmission solitons that use kinks as envelope waves and carry exponential and other wave functions. It is in DNA that there are two types of solitons with different properties, namely, wave envelope solitons have the function of transmitting biological binding energy and biological information, and Kink solitons only have the function of expanding or contracting double helix structures or opening and closing double helices. Their mutual cooperation enables the function of DNA to be completed. This paper proposes that the bio-photonic solitons in the bio-photonic radiation resonate with various solitons in the receptor DNA or protein as a whole (or locally), thereby transmitting biological information or genetic information, which is one of the important mechanisms for the bio-photonic radiation to transmit donors or change the genetic traits of receptors. It can be simply referred to as the soliton resonance mechanism. Furthermore, through the research and development of various instruments for collecting or amplifying plant photonic radiation signals, human cells can safely receive plant signals. This can be a process of resonance between plant photonic solitons and various biological solitons in human cells, which can play a role in regulating diseases. These experimental results and applications also provide an excellent interpretation of the soliton resonance mechanism.展开更多
Background Optimal gut health is important to maximize growth performance and feed efficiency in broiler chickens.A total of 1,365 one-day-old male Ross 308 broiler chickens were randomly divided into 5 treatments gro...Background Optimal gut health is important to maximize growth performance and feed efficiency in broiler chickens.A total of 1,365 one-day-old male Ross 308 broiler chickens were randomly divided into 5 treatments groups with 21 replicates,13 birds per replicate.The present research investigated effects of microbial muramidase or a precision glycan alone or in combination on growth performance,apparent total tract digestibility,total blood carotenoid content,intestinal villus length,meat quality and gut microbiota in broiler chickens.Treatments included:NC:negative control(basal diet group);PC:positive control(basal diet+0.02%probiotics);MR:basal diet+0.035%microbial muramidase;PG:basal diet+0.1%precision glycan;and MRPG:basal diet+0.025%MR+0.1%PG,respectively.Results MRPG group increased the body weight gain and feed intake(P<0.05)compared with NC group.Moreover,it significantly increased total serum carotenoid(P<0.05)and MRPG altered the microbial diversity in ileum contents.The MRPG treatment group increased the abundance of the phylum Firmicutes,and family Lachnospiraceae,Ruminococcaceae,Oscillospiraceae,Lactobacillaceae,Peptostreptococcaceae and decreased the abundance of the phylum Campilobacterota,Bacteroidota and family Bacteroidaceae.Compared with the NC group,the chickens fed MRPG showed significantly increased in duodenum villus length at end the trial.Conclusion In this study,overall results showed that the synergetic effects of MR and PG showed enhancing growth performance,total serum carotenoid level and altering gut microbiota composition of broilers.The current research indicates that co-supplementation of MR and PG in broiler diets enhances intestinal health,consequently leading to an increased broiler production.展开更多
Millet (Pennisetum glaucum (L.) R. Br.) is the Sahelian crop par excellence due to its adaptation to the particular production conditions in this region. Unfortunately, in recent years this crop has been threatened by...Millet (Pennisetum glaucum (L.) R. Br.) is the Sahelian crop par excellence due to its adaptation to the particular production conditions in this region. Unfortunately, in recent years this crop has been threatened by very strong parasitic pressure and drought during the production period. The objective of this study is to analyze the main constraints of millet production and the solutions known to producers. A survey was carried out in November 2022 with a sample of 298 producers in five municipalities in the Tahoua region. The main constraints are drought and pressure from crop pests (locust, millet ear miner, floricultural insects) according to 57.9% of respondents. The millet ear miner is the most formidable pest according to 55% of respondents. Thus, the average yield obtained in a year of good production without the leafminer is 194 kg/ha and that obtained in a year of millet ear leafminer is around 27 kg to 43 kg/ha depending on the municipality. The yield obtained this last campaign after the attack of this leafminer varies from 64 to 77 kg/ha depending on the municipalities compared to a potential yield of over 1000 kg/ha. More than half of producers (58.1%) are unaware of the existence of biological control compared to only 12.5% who are aware of this alternative method. Work to popularize this technology is necessary in the five municipalities and the entire region in general.展开更多
In tropical environments, most soybean growth studies have utilized rice husk biochar (RHB) in soil, even though it is low in nitrogen, potassium, and phosphorous. This may not give short-term agronomic performance re...In tropical environments, most soybean growth studies have utilized rice husk biochar (RHB) in soil, even though it is low in nitrogen, potassium, and phosphorous. This may not give short-term agronomic performance relative to enriched biochar. Moreover, the impact of inoculating soybean seeds with atmospheric nitrogen-fixing bacterium Bradyrhizobium japonicum on nodulation and grain yield has produced inconclusive findings in the literature. This research therefore aims to assess the effect of poultry manure (PM), poultry manure biochar (PMB) and RHB alone and in combinations on grain yield, dry shoot and root biomass of soybeans in the semi-deciduous agro-ecological zone. In addition, the effect of B. japonicum inoculated and non-inoculated soybean seeds on nodulation and grain yield was also investigated. The treatments followed a split plot design studying inoculation and non-inoculation, soil amendments (eight), and control subplot factors, respectively. The results show that the amendment of a ferric acrisol with 4 Mg∙ha−1 PM, 10 Mg∙ha−1 RHB + 2 Mg∙ha−1 PM, and 5 Mg∙ha−1 RHB + 4 Mg∙ha−1 PMB with B. japonicum inoculated seed produced significantly greater grain yield (p = 0.05). PM treatment had a significant (p B. japonicum-inoculated soybean seeds significantly (p = 0.014) increased soybean nodulation. This study suggests that RHB combined with PM or PMB provides a beneficial source of N, P, and K, resulting in improved soybean yield and nodulation in a tropical ferric acrisol.展开更多
EPSPS is a key gene in the shikimic acid synthesis pathway that has been widely used in breeding crops with herbicide resistance.However,its role in regulating cell elongation is poorly understood.Through the overexpr...EPSPS is a key gene in the shikimic acid synthesis pathway that has been widely used in breeding crops with herbicide resistance.However,its role in regulating cell elongation is poorly understood.Through the overexpression of EPSPS genes,we generated lines resistant to glyphosate that exhibit an unexpected dwarf phenotype.A representative line,DHR1,exhibits a stable dwarf phenotype throughout its entire growth period.Except for plant height,the other agronomic traits of DHR1 are similar to its transgenic explants ZM24.Paraffin section observations showed that DHR1 internodes are shortened due to reduced elongation and division of the internode cells.Exogenous hormones confirmed that DHR1 is not a classical brassinolide(BR)-or gibberellin(GA)-related dwarfing mutant.Hybridization analysis and fine mapping confirmed that the EPSPS gene is the causal gene for dwarfism,and the phenotype can be inherited in different genotypes.Transcriptome and metabolome analyses showed that genes associated with the phenylpropanoid synthesis pathway are enriched in DHR1 compared with ZM24.Flavonoid metabolites are enriched in DHR1,whereas lignin metabolites are reduced.The enhancement of flavonoids likely results in differential expression of auxin signal pathway genes and alters the auxin response,subsequently affecting cell elongation.This study provides a new strategy for generating dwarfs and will accelerate advancements in light simplification in the cultivation and mechanized harvesting of cotton.展开更多
Monomethyl auristatin E(MMAE)is a derivative of the marine peptide Dolastatin 10,which has therapeutic effects against various cancers according to its antimitotic activity in multiple clinical trials.The antibody dru...Monomethyl auristatin E(MMAE)is a derivative of the marine peptide Dolastatin 10,which has therapeutic effects against various cancers according to its antimitotic activity in multiple clinical trials.The antibody drug conjugate(ADC)of MMAE is currently used in clinical practice.However,the safety issues of MMAE-based ADC,such as high drug toxicity and poor bioavailability,still exist when using it for anticancer therapy.A sustained release of drug delivery approach should be used to reduce toxicity and achieve sufficient anticancer effects.Herein,PLGA-b-PEG 2000 with excellent biocompatibility and slow degradation ability was adopted to construct MMAE-loaded nanoparticles for safe and effective chemotherapy.The sustained release effect and the immunogenic cell death(ICD)effect of PLGA-MMAE nanoparticles were assessed by in vitro experiments.The PLGA-MMAE nanoparticles effectively accumulated in the tumor through the enhanced permeability and retention(EPR)effect,inducing cell apoptosis and causing a certain degree of immune response.The sustained drug release of PLGA-MMAE improved the bioavailability and effectively reduced the toxicity and development of the tumor compared to the effect of free MMAE or ADC.Overall,this study provides a safe and effective chemotherapeutic approach,as well as a simple and effective synthetic process for MMAE-based nanoparticles,improving their therapeutic efficacy and safety.展开更多
Gravimetric resonant-inspired biosensors have attracted increasing attention in industrial and point-ofcare applications,enabling label-free detection of biomarkers such as DNA and antibodies.Capacitive micromachined ...Gravimetric resonant-inspired biosensors have attracted increasing attention in industrial and point-ofcare applications,enabling label-free detection of biomarkers such as DNA and antibodies.Capacitive micromachined ultrasonic transducers(CMUTs)are promising tools for developing miniaturized highperformance biosensing complementary metal–oxide–silicon(CMOS)platforms.However,their operability is limited by inefficient functionalization,aggregation,crosstalk in the buffer,and the requirement for an external high-voltage(HV)power supply.In this study,we aimed to propose a CMUTs-based resonant biosensor integrated with a CMOS front–end interface coupled with ethylene–glycol alkanethiols to detect single-stranded DNA oligonucleotides with large specificity.The topography of the functionalized surface was characterized by energy-dispersive X-ray microanalysis.Improved selectivity for onchip hybridization was demonstrated by comparing complementary and non-complementary singlestranded DNA oligonucleotides using fluorescence imaging technology.The sensor array was further characterized using a five-element lumped equivalent model.The 4 mm^(2) application-specific integrated circuit chip was designed and developed through 0.18 lm HV bipolar-CMOS-double diffused metal–oxide–silicon(DMOS)technology(BCD)to generate on-chip 20 V HV boosting and to track feedback frequency under a standard 1.8 V supply,with a total power consumption of 3.8 mW in a continuous mode.The measured results indicated a detection sensitivity of 7.943×10^(-3) lmol·L^(-1)·Hz^(-1) over a concentration range of 1 to 100 lmol·L^(-1).In conclusion,the label-free biosensing of DNA under dry conditions was successfully demonstrated using a microfabricated CMUT array with a 2 MHz frequency on CMOS electronics with an internal HV supplier.Moreover,ethylene–glycol alkanethiols successfully deposited self-assembled monolayers on aluminum electrodes,which has never been attempted thus far on CMUTs,to enhance the selectivity of bio-functionalization.The findings of this study indicate the possibility of full-on-chip DNA biosensing with CMUTs.展开更多
Gibberellin(GA)functions in plant growth and development.However,genes involved in the biosynthesis and regulation of GA in crop plants are poorly understood.We isolated the mutant gad5-1(GAAssociated Dwarf 5),charact...Gibberellin(GA)functions in plant growth and development.However,genes involved in the biosynthesis and regulation of GA in crop plants are poorly understood.We isolated the mutant gad5-1(GAAssociated Dwarf 5),characterized by dwarfing,short internodes,and dark green and short leaves.Map-based gene cloning and allelic verification confirmed that ZmGAD5 encodes ent-kaurenoic acid oxidase(KAO),which catalyzes KA(ent-kaurenoic acid)to GA12 conversion during GA biosynthesis in maize.ZmGAD5 is localized to the endoplasmic reticulum and is present in multiple maize organs.In gad5-1,the expression of ZmGAD5 is severely reduced,and the levels of the direct substrate of KAO,KA,is increased,leading to a reduction in GA content.The abnormal phenotype of gad5-1 was restored by exogenous application of GA3.The biomass,plant height,and levels of GA12 and GA3 in transgenic Arabidopsis overexpressing ZmGAD5 were increased in comparison with the corresponding controls Col-0.These findings deepen our understanding of genes involved in GA biosynthesis,and could lead to the development of maize lines with improved architecture and higher planting-density tolerance.展开更多
Over the last few years, the importance of the resident intestinal microbiota in the pathogenesis of several gastrointestinal diseases has been largely investigated. Growing evidence suggest that microbiota can influe...Over the last few years, the importance of the resident intestinal microbiota in the pathogenesis of several gastrointestinal diseases has been largely investigated. Growing evidence suggest that microbiota can influence gastrointestinal motility. The current working hypothesis is that dysbiosis-driven mucosal alterations induce the production of several inflammatory/immune mediators which affect gut neuro-muscular functions. Besides these indirect mucosal-mediated effects, the present review highlights that recent evidence suggests that microbiota can directly affect enteric nerves and smooth muscle cells functions through its metabolic products or bacterial molecular components translocated from the intestinal lumen. Tolllike receptors, the bacterial recognition receptors, are expressed both on enteric nerves and smooth muscle and are emerging as potential mediators between microbiota and the enteric neuromuscular apparatus. Furthermore, the ongoing studies on probiotics support the hypothesis that the neuromuscular apparatus may represent a target of intervention, thus opening new physiopathological and therapeutic scenarios.展开更多
Methicillin-resistant Staphylococcus aureus (MRSA) is among the most alarming pathogens affecting both humans and the global bovine industry. The current control measures in hospitals and on farms for MRSA have proven...Methicillin-resistant Staphylococcus aureus (MRSA) is among the most alarming pathogens affecting both humans and the global bovine industry. The current control measures in hospitals and on farms for MRSA have proven to be inadequate leaving a need for new rapid control methods to curb MRSA infections in situ. New control measures for bacterial infection are widely sought, with particular interest in the applications for bacteriophages (phages) as a biocontrol or therapeutic agent. The current study uses a wild highly lytic phage isolated from cow’s milk taken from three farms in Baghdad, Iraq. The resulting phage was able to rescue 100% of the mice from a median lethal dose (LD50) or (1 × 108 CFU mL-1 per mouse) for MRSA wild isolates achieved when the phage: bacteria ratio was 100:1. Even when treatment was delayed for 6 h post lethal infection, to the point where all mice were moribund, 80% of them were rescued by a single injection of this phage preparation. Based on the current results, a comprehensive study is needed to guide further research on the MRSA phage as a biocontrol for MRSA mastitis in dairy cows to replace or reduce the use of antibiotics in animal husbandry.展开更多
Investigation of metal–organic frameworks(MOFs)for biomedical applications has attracted much attention in recent years.MOFs are regarded as a promising class of nanocarriers for drug delivery owing to well-defined s...Investigation of metal–organic frameworks(MOFs)for biomedical applications has attracted much attention in recent years.MOFs are regarded as a promising class of nanocarriers for drug delivery owing to well-defined structure,ultrahigh surface area and porosity,tunable pore size,and easy chemical functionalization.In this review,the unique properties of MOFs and their advantages as nanocarriers for drug delivery in biomedical applications were discussed in the first section.Then,state-ofthe-art strategies to functionalize MOFs with therapeutic agents were summarized,including surface adsorption,pore encapsulation,covalent binding,and functional molecules as building blocks.In the third section,the most recent biological applications of MOFs for intracellular delivery of drugs,proteins,and nucleic acids,especially aptamers,were presented.Finally,challenges and prospects were comprehensively discussed to provide context for future development of MOFs as efficient drug delivery systems.展开更多
It is of great knowledge nowadays that the use of fossil fuels is responsible for the emission of gases that intensify the greenhouse effect, which threatens the survival of the humankind. The gravity of this fact cou...It is of great knowledge nowadays that the use of fossil fuels is responsible for the emission of gases that intensify the greenhouse effect, which threatens the survival of the humankind. The gravity of this fact could be mitigated through the indirect use of solar energy for fuels derived from vegetable that can be planted and cultivated by the world of renewable and non-polisher. Microalgae play an important role in this regard, as they have promising characteristics as potential raw material for the production of biofuels, able to absorb large amounts of CO2. Chlorophyll organisms convert these simple substances in the atmosphere, absorbing sunlight into chemical energy stored, that is, compounds with high energy, biomass can also be used to obtain biocompounds human nutritional supplement and food animal, however, have been found an important number of difficulties to economically viable production like high cost of production of dry biomass and oil extraction. Here, we review the main approaches of biorefinery concept appearing as an alternative to achieve economic viability of the production of bio-diesel based on microalgae. The major points are the following: 1) use of re-residual water, 2) marketing of Carbon Credits, and 3) development of co-products resulting from high value added.展开更多
At present, Brazil imports approximately 11 billion liters/year of diesel. With the interruption of the works in the new Petrobras refineries, the projection is that by 2025 this volume will increase to 24.2 billion l...At present, Brazil imports approximately 11 billion liters/year of diesel. With the interruption of the works in the new Petrobras refineries, the projection is that by 2025 this volume will increase to 24.2 billion liters of diesel/year. In this sense, the biodiesel factory Grand Valle Bio Energy Ltda., located in the state of Rio de Janeiro, in conjunction with the FAPERJ makes some investments in technology development for the cultivation and use of microalgae as an alternative raw material in the production of biodiesel. Based on arguments previously said, this work presents the results of the microalgae cultivation Monoraphidium sp. in photobioreactors the pilot plant of the company. The installation with an area of 120 m2 is included with 2 open photobioreactors of type falling film (20 m × 1 m), with a cascade of 18mm and capacity of 4000 L. The lineage cultivated is selected from previous ecophysiological studies that are identified as promising for biodiesel production by having a high potential for the production of lipids. This lineage is maintained at collection of the stock of cultures Laboratory of Green Technologies of the School of Chemistry/ UFRJ. The cultivation was performed in means ASM-1 (Gorham et al., 1964), initial pH 8.0, with aeration and circulation average of 8 hours a day during 19 days. The culture was started with an inoculum of 1 × 107 cel/ml. The lipid production was determined in two phases of growth: on day 4 (exponential phase) and 15 day (stationary phase). For the determination and quantification of lipid content, two different methods were assessed for a sample of biomass, submitted to the same processes the separation and drying. The results showed the methodology of Bligh & Dyer with modifications as the most efficient in extracting lipids. The total lipid content of the biomass Monoraphidium sp. was 30.58%. The growth rate varied between 0.74 ± 0.01 and 0.68 ± 0.02.展开更多
The disposal of spent activated carbon(AC) will inevitably create secondary pollution. In overcoming this problem, the spent AC can be regenerated by means of biological approach. Bioregeneration is the phenomenon in ...The disposal of spent activated carbon(AC) will inevitably create secondary pollution. In overcoming this problem, the spent AC can be regenerated by means of biological approach. Bioregeneration is the phenomenon in which through the action of microorganisms, the adsorbed pollutants on the surface of the AC will be biodegraded and this enables further adsorption of pollutants to occur with time elapse. This review provides the challenges and perspectives for effective bioregeneration to occur in biological activated carbon(BAC)column. Owing to very few reported works on the bioregeneration rate in BAC column, emphasis is put forward on the recently developed models of bioregeneration kinetic in batch system. All in all, providing potential solutions in increasing the lifespan of AC and the enhancement of bioregeneration rate will definitely overcome the bottlenecks in spent AC bioregeneration.展开更多
In fifty years, laser technology has made great progress, and its many applications make it essential in everyday life. However, this technology is still open to numerous developments. Across multiple applications, th...In fifty years, laser technology has made great progress, and its many applications make it essential in everyday life. However, this technology is still open to numerous developments. Across multiple applications, there is particular focus in the field of medicine, for diagnosis for tailored therapies, and as a research tool in biology. Whereas its use is now well-demonstrated in ophthalmologic and dermatologic treatments, and surgery, one of the most fascinating aspects of laser technology in the field of biology emerged in the late 1990s with the development of devices able to perform fine dissections of biological tissues using a laser beam. The so-called laser-associated microdissection offers a rapid, precise method of isolating and removing targeted cells or groups of cells from complex biological tissues. It represents the missing link between clinical observations and the intrinsic physiological mechanisms of biological tissues. The molecular examination of pathologically altered cells and tissues for DNA, RNA, and protein expression has revolutionized research and diagnosis in pathology, enabling assessment of the role of the cell type in the normal physiological or disease process. Alongside conventional diagnostic and therapeutic approaches, another field of application contribute to the development of targeted treatments at the nanoscale level of laser technology, mainly in the field of cancer, leading to design new and innovative strategies in drug delivery and image-guided surgery. Most of these approaches, but although not exhaustively, will be presented here.展开更多
Objective: To examine the survivability and stability of probiotic strains in presence and absence of pharmaceutical excipients for a long period of time at(4 ± 1)℃.Methods: The survival rates of probiotic strai...Objective: To examine the survivability and stability of probiotic strains in presence and absence of pharmaceutical excipients for a long period of time at(4 ± 1)℃.Methods: The survival rates of probiotic strains, Pediococcus pentosaceus GS4(MTCC12683)(NCBI HM044322), GS17(NCBI KJ608061) and Lactobacillus gasseri(ATCC 19992), were evaluated. Probiotic strains were lyophilized individually and in combination of excipients(sorbitol, ascorbic acid, fructose and skim milk). The preparation was monitored for 120 d storing at(4 ± 1)℃. During storage, all the preparations were evaluated for viability and stability of probiotic properties like lactic acid production, antimicrobial effect, water activity, and adherence to epithelial cells.Results: Sorbitol, ascorbic acid and skim milk favoured the viability of freeze-dried cells and sustained probiotic properties during storage. Without excipients(control group),strains showed percentage of survivability not more than 70% while strains with excipients survived for 73%–93% for a long period of time.Conclusions: Commonly used excipients can be considered as a vehicle for delivering active principle in probiotic formulation and for sustaining the viability and stability of probiotic strains for a period of 120 d.展开更多
Scleritis and other autoimmune diseases are characterized by an imbalance in the levels of pro-inflammatory and anti-inflammatory molecules with the balance tilted more towards the former due to the failure of recogni...Scleritis and other autoimmune diseases are characterized by an imbalance in the levels of pro-inflammatory and anti-inflammatory molecules with the balance tilted more towards the former due to the failure of recognition of self. The triggering of inflammatory process could be ascribed to the presence of cytoplasmic DNA/chromatin that leads to activation of cytosolic DNA-sensing c GAS-STING(cyclic GMP-AMP synthase linked to stimulator of interferon genes) pathway and enhanced expression of NF-κB that results in an increase in the production of pro-inflammatory bioactive lipids. Bioactive lipids gamma-linolenic acid(GLA), dihomoGLA(DGLA), prostaglandin E1(PGE1), prostacyclin(PGI2) and lipoxin A4, resolvins, protectins and maresins have antiinflammatory actions, bind to DNA to render it non-antigenic and are decreased in autoimmune diseases. These results suggest that efforts designed to enhance the production of anti-inflammatory bioactive lipids may form a new approach to autoimmune diseases. Local injection or infusion of lipoxins, resolvins, protectins and maresins or their precursors such as arachidonic acid may be exploited in the prevention and management of autoimmune diseases including scleritis, uveitis and lupus/rheumatoid arthritis.展开更多
Facing the pressure of fossil energy exhaustion and environment pollution, people begin to search for clean and renewable energy to partly substitute fossil energy and realize sustainable development. As the fourth ty...Facing the pressure of fossil energy exhaustion and environment pollution, people begin to search for clean and renewable energy to partly substitute fossil energy and realize sustainable development. As the fourth type of energy, biomass energy has many advantages: wide distribution, large quantity, being renewable, clean, storable and transportable and so on. By adopting thermo-chemical and biochemical technologies, biomass energy can be converted to high quality solid, liquid and gaseous energy products, and provide convenient heat and power energy for human being’s production and daily life. This paper presented the status quo of biomass power generation industry in China and also introduced briefly the future development models.展开更多
Background:Endolysins,the bacteriophage-originated peptidoglycan hydrolases,are a promising replacement for antibiotics due to immediate lytic activity and no antibiotic resistance.The objectives of this study were to...Background:Endolysins,the bacteriophage-originated peptidoglycan hydrolases,are a promising replacement for antibiotics due to immediate lytic activity and no antibiotic resistance.The objectives of this study were to investigate the lytic activity of endolysin LyJH307 against S.bovis and to explore changes in rumen fermentation and microbiota in an in vitro system.Two treatments were used:1)control,corn grain without LyJH307;and 2)LyJH307,corn grain with LyJH307(4 U/mL).An in vitro fermentation experiment was performed using mixture of rumen fluid collected from two cannulated Holstein steers(450±30 kg)and artificial saliva buffer mixed as 1:3 ratio for 12 h incubation time.In vitro dry matter digestibility,pH,volatile fatty acids,and lactate concentration were estimated at 12 h,and the gas production was measured at 6,9,and 12 h.The rumen bacterial community was analyzed using 16S rRNA amplicon sequencing.Results:LyJH307 supplementation at 6 h incubation markedly decreased the absolute abundance of S.bovis(approximately 70% compared to control,P=0.0289)and increased ruminal pH(P=0.0335)at the 12 h incubation.The acetate proportion(P=0.0362)was significantly increased after LyJH307 addition,whereas propionate(P=0.0379)was decreased.LyJH307 supplementation increased D-lactate(P=0.0340)without any change in L-lactate concentration(P>0.10).There were no significant differences in Shannon’s index,Simpson’s index,Chao1 estimates,and evenness(P>0.10).Based on Bray-Curtis dissimilarity matrices,the LyJH307 affected the overall shift in microbiota(P=0.097).LyJH307 supplementation induced an increase of 11 genera containing Lachnoclostridium,WCHB1-41,unclassified genus Selenomonadaceae,Paraprevotella,vadinBE97,Ruminococcus gauvreauii group,Lactobacillus,Anaerorhabdus furcosa group,Victivallaceae,Desulfuromonadaceae,and Sediminispirochaeta.The predicted functional features represented by the Kyoto Encyclopedia of Genes and Genomes pathways were changed by LyJH307 toward a decrease of carbohydrate metabolism.Conclusions:LyJH307 caused a reduction of S.bovis and an increase of pH with shifts in minor microbiota and its metabolic pathways related to carbohydrate metabolism.This study provides the first insight into the availability of endolysin as a specific modulator for rumen and shows the possibility of endolysin degradation by rumen microbiota.展开更多
文摘The important component of the bio-photonic radiation is the bio-photonic solitons. Due to their existence, the bio-photonic radiation is different from ordinary electromagnetic radiation and has a very clear self-induced transparency. On the other hand, there are also various bio-solitons in DNA and proteins, which are manifested as various structural solitons such as kinks, or transmission solitons that use kinks as envelope waves and carry exponential and other wave functions. It is in DNA that there are two types of solitons with different properties, namely, wave envelope solitons have the function of transmitting biological binding energy and biological information, and Kink solitons only have the function of expanding or contracting double helix structures or opening and closing double helices. Their mutual cooperation enables the function of DNA to be completed. This paper proposes that the bio-photonic solitons in the bio-photonic radiation resonate with various solitons in the receptor DNA or protein as a whole (or locally), thereby transmitting biological information or genetic information, which is one of the important mechanisms for the bio-photonic radiation to transmit donors or change the genetic traits of receptors. It can be simply referred to as the soliton resonance mechanism. Furthermore, through the research and development of various instruments for collecting or amplifying plant photonic radiation signals, human cells can safely receive plant signals. This can be a process of resonance between plant photonic solitons and various biological solitons in human cells, which can play a role in regulating diseases. These experimental results and applications also provide an excellent interpretation of the soliton resonance mechanism.
基金supported by Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education(NRF-RS-2023-00275307)。
文摘Background Optimal gut health is important to maximize growth performance and feed efficiency in broiler chickens.A total of 1,365 one-day-old male Ross 308 broiler chickens were randomly divided into 5 treatments groups with 21 replicates,13 birds per replicate.The present research investigated effects of microbial muramidase or a precision glycan alone or in combination on growth performance,apparent total tract digestibility,total blood carotenoid content,intestinal villus length,meat quality and gut microbiota in broiler chickens.Treatments included:NC:negative control(basal diet group);PC:positive control(basal diet+0.02%probiotics);MR:basal diet+0.035%microbial muramidase;PG:basal diet+0.1%precision glycan;and MRPG:basal diet+0.025%MR+0.1%PG,respectively.Results MRPG group increased the body weight gain and feed intake(P<0.05)compared with NC group.Moreover,it significantly increased total serum carotenoid(P<0.05)and MRPG altered the microbial diversity in ileum contents.The MRPG treatment group increased the abundance of the phylum Firmicutes,and family Lachnospiraceae,Ruminococcaceae,Oscillospiraceae,Lactobacillaceae,Peptostreptococcaceae and decreased the abundance of the phylum Campilobacterota,Bacteroidota and family Bacteroidaceae.Compared with the NC group,the chickens fed MRPG showed significantly increased in duodenum villus length at end the trial.Conclusion In this study,overall results showed that the synergetic effects of MR and PG showed enhancing growth performance,total serum carotenoid level and altering gut microbiota composition of broilers.The current research indicates that co-supplementation of MR and PG in broiler diets enhances intestinal health,consequently leading to an increased broiler production.
文摘Millet (Pennisetum glaucum (L.) R. Br.) is the Sahelian crop par excellence due to its adaptation to the particular production conditions in this region. Unfortunately, in recent years this crop has been threatened by very strong parasitic pressure and drought during the production period. The objective of this study is to analyze the main constraints of millet production and the solutions known to producers. A survey was carried out in November 2022 with a sample of 298 producers in five municipalities in the Tahoua region. The main constraints are drought and pressure from crop pests (locust, millet ear miner, floricultural insects) according to 57.9% of respondents. The millet ear miner is the most formidable pest according to 55% of respondents. Thus, the average yield obtained in a year of good production without the leafminer is 194 kg/ha and that obtained in a year of millet ear leafminer is around 27 kg to 43 kg/ha depending on the municipality. The yield obtained this last campaign after the attack of this leafminer varies from 64 to 77 kg/ha depending on the municipalities compared to a potential yield of over 1000 kg/ha. More than half of producers (58.1%) are unaware of the existence of biological control compared to only 12.5% who are aware of this alternative method. Work to popularize this technology is necessary in the five municipalities and the entire region in general.
文摘In tropical environments, most soybean growth studies have utilized rice husk biochar (RHB) in soil, even though it is low in nitrogen, potassium, and phosphorous. This may not give short-term agronomic performance relative to enriched biochar. Moreover, the impact of inoculating soybean seeds with atmospheric nitrogen-fixing bacterium Bradyrhizobium japonicum on nodulation and grain yield has produced inconclusive findings in the literature. This research therefore aims to assess the effect of poultry manure (PM), poultry manure biochar (PMB) and RHB alone and in combinations on grain yield, dry shoot and root biomass of soybeans in the semi-deciduous agro-ecological zone. In addition, the effect of B. japonicum inoculated and non-inoculated soybean seeds on nodulation and grain yield was also investigated. The treatments followed a split plot design studying inoculation and non-inoculation, soil amendments (eight), and control subplot factors, respectively. The results show that the amendment of a ferric acrisol with 4 Mg∙ha−1 PM, 10 Mg∙ha−1 RHB + 2 Mg∙ha−1 PM, and 5 Mg∙ha−1 RHB + 4 Mg∙ha−1 PMB with B. japonicum inoculated seed produced significantly greater grain yield (p = 0.05). PM treatment had a significant (p B. japonicum-inoculated soybean seeds significantly (p = 0.014) increased soybean nodulation. This study suggests that RHB combined with PM or PMB provides a beneficial source of N, P, and K, resulting in improved soybean yield and nodulation in a tropical ferric acrisol.
基金supported by funding from the Natural Science Foundation of Henan Province,China(232300421010)the Key Research and Development Project of Henan Province,China(231111110400)+4 种基金the Hainan Provincial Joint Project of Sanya Yazhou Bay Science and Technology City,China(320LH045)the Hainan Yazhou Bay Seed Laboratory,China(B21HJ0215)the Fundamental Research Funds of State Key Laboratory of Cotton Biology,China(2021CBE03)the Central Public-interest Scientific Institution Basal Research Fund,China(Y2023XK16)the Innovation Program of the Chinese Academy of Agricultural Sciences(CAAS-ASTIPIVFCAAS to F.G.L)。
文摘EPSPS is a key gene in the shikimic acid synthesis pathway that has been widely used in breeding crops with herbicide resistance.However,its role in regulating cell elongation is poorly understood.Through the overexpression of EPSPS genes,we generated lines resistant to glyphosate that exhibit an unexpected dwarf phenotype.A representative line,DHR1,exhibits a stable dwarf phenotype throughout its entire growth period.Except for plant height,the other agronomic traits of DHR1 are similar to its transgenic explants ZM24.Paraffin section observations showed that DHR1 internodes are shortened due to reduced elongation and division of the internode cells.Exogenous hormones confirmed that DHR1 is not a classical brassinolide(BR)-or gibberellin(GA)-related dwarfing mutant.Hybridization analysis and fine mapping confirmed that the EPSPS gene is the causal gene for dwarfism,and the phenotype can be inherited in different genotypes.Transcriptome and metabolome analyses showed that genes associated with the phenylpropanoid synthesis pathway are enriched in DHR1 compared with ZM24.Flavonoid metabolites are enriched in DHR1,whereas lignin metabolites are reduced.The enhancement of flavonoids likely results in differential expression of auxin signal pathway genes and alters the auxin response,subsequently affecting cell elongation.This study provides a new strategy for generating dwarfs and will accelerate advancements in light simplification in the cultivation and mechanized harvesting of cotton.
基金funded by the Hainan Provincial Joint Project of Sanya Yazhou Bay Science and Technology City(No.820LH027)the Hainan Provincial Natural Science Foundation of China(No.823RC472)+1 种基金the Open Project Program of Wuhan National Laboratory for Optoelectronics(No.2021WNLOKF008)the Hainan University Scientific Research Foundation(KYQD(ZR)19107).
文摘Monomethyl auristatin E(MMAE)is a derivative of the marine peptide Dolastatin 10,which has therapeutic effects against various cancers according to its antimitotic activity in multiple clinical trials.The antibody drug conjugate(ADC)of MMAE is currently used in clinical practice.However,the safety issues of MMAE-based ADC,such as high drug toxicity and poor bioavailability,still exist when using it for anticancer therapy.A sustained release of drug delivery approach should be used to reduce toxicity and achieve sufficient anticancer effects.Herein,PLGA-b-PEG 2000 with excellent biocompatibility and slow degradation ability was adopted to construct MMAE-loaded nanoparticles for safe and effective chemotherapy.The sustained release effect and the immunogenic cell death(ICD)effect of PLGA-MMAE nanoparticles were assessed by in vitro experiments.The PLGA-MMAE nanoparticles effectively accumulated in the tumor through the enhanced permeability and retention(EPR)effect,inducing cell apoptosis and causing a certain degree of immune response.The sustained drug release of PLGA-MMAE improved the bioavailability and effectively reduced the toxicity and development of the tumor compared to the effect of free MMAE or ADC.Overall,this study provides a safe and effective chemotherapeutic approach,as well as a simple and effective synthetic process for MMAE-based nanoparticles,improving their therapeutic efficacy and safety.
基金supported by the National Key Research and Development Program of China(2022YFB3205400)the National Natural Science Foundation of China(52275570)+1 种基金the Postdoctoral Innovation Talents Support Program(BX20230288)the Postdoctoral Science Foundation of Shaanxi Province(2018BSHEDZZ08).
文摘Gravimetric resonant-inspired biosensors have attracted increasing attention in industrial and point-ofcare applications,enabling label-free detection of biomarkers such as DNA and antibodies.Capacitive micromachined ultrasonic transducers(CMUTs)are promising tools for developing miniaturized highperformance biosensing complementary metal–oxide–silicon(CMOS)platforms.However,their operability is limited by inefficient functionalization,aggregation,crosstalk in the buffer,and the requirement for an external high-voltage(HV)power supply.In this study,we aimed to propose a CMUTs-based resonant biosensor integrated with a CMOS front–end interface coupled with ethylene–glycol alkanethiols to detect single-stranded DNA oligonucleotides with large specificity.The topography of the functionalized surface was characterized by energy-dispersive X-ray microanalysis.Improved selectivity for onchip hybridization was demonstrated by comparing complementary and non-complementary singlestranded DNA oligonucleotides using fluorescence imaging technology.The sensor array was further characterized using a five-element lumped equivalent model.The 4 mm^(2) application-specific integrated circuit chip was designed and developed through 0.18 lm HV bipolar-CMOS-double diffused metal–oxide–silicon(DMOS)technology(BCD)to generate on-chip 20 V HV boosting and to track feedback frequency under a standard 1.8 V supply,with a total power consumption of 3.8 mW in a continuous mode.The measured results indicated a detection sensitivity of 7.943×10^(-3) lmol·L^(-1)·Hz^(-1) over a concentration range of 1 to 100 lmol·L^(-1).In conclusion,the label-free biosensing of DNA under dry conditions was successfully demonstrated using a microfabricated CMUT array with a 2 MHz frequency on CMOS electronics with an internal HV supplier.Moreover,ethylene–glycol alkanethiols successfully deposited self-assembled monolayers on aluminum electrodes,which has never been attempted thus far on CMUTs,to enhance the selectivity of bio-functionalization.The findings of this study indicate the possibility of full-on-chip DNA biosensing with CMUTs.
基金the National Natural Science Foundation of China(U21A20206,Chun-Peng Song)the Project of Sanya Yazhou Bay Science and Technology City(SCKJJYRC-2022-78,Baozhu Li)+1 种基金the Program for Innovative Research Team(in Science and Technology)in University of Henan Province(21IRTSTHN019,Siyi Guo)the 111 Project of China(D16014).
文摘Gibberellin(GA)functions in plant growth and development.However,genes involved in the biosynthesis and regulation of GA in crop plants are poorly understood.We isolated the mutant gad5-1(GAAssociated Dwarf 5),characterized by dwarfing,short internodes,and dark green and short leaves.Map-based gene cloning and allelic verification confirmed that ZmGAD5 encodes ent-kaurenoic acid oxidase(KAO),which catalyzes KA(ent-kaurenoic acid)to GA12 conversion during GA biosynthesis in maize.ZmGAD5 is localized to the endoplasmic reticulum and is present in multiple maize organs.In gad5-1,the expression of ZmGAD5 is severely reduced,and the levels of the direct substrate of KAO,KA,is increased,leading to a reduction in GA content.The abnormal phenotype of gad5-1 was restored by exogenous application of GA3.The biomass,plant height,and levels of GA12 and GA3 in transgenic Arabidopsis overexpressing ZmGAD5 were increased in comparison with the corresponding controls Col-0.These findings deepen our understanding of genes involved in GA biosynthesis,and could lead to the development of maize lines with improved architecture and higher planting-density tolerance.
文摘Over the last few years, the importance of the resident intestinal microbiota in the pathogenesis of several gastrointestinal diseases has been largely investigated. Growing evidence suggest that microbiota can influence gastrointestinal motility. The current working hypothesis is that dysbiosis-driven mucosal alterations induce the production of several inflammatory/immune mediators which affect gut neuro-muscular functions. Besides these indirect mucosal-mediated effects, the present review highlights that recent evidence suggests that microbiota can directly affect enteric nerves and smooth muscle cells functions through its metabolic products or bacterial molecular components translocated from the intestinal lumen. Tolllike receptors, the bacterial recognition receptors, are expressed both on enteric nerves and smooth muscle and are emerging as potential mediators between microbiota and the enteric neuromuscular apparatus. Furthermore, the ongoing studies on probiotics support the hypothesis that the neuromuscular apparatus may represent a target of intervention, thus opening new physiopathological and therapeutic scenarios.
文摘Methicillin-resistant Staphylococcus aureus (MRSA) is among the most alarming pathogens affecting both humans and the global bovine industry. The current control measures in hospitals and on farms for MRSA have proven to be inadequate leaving a need for new rapid control methods to curb MRSA infections in situ. New control measures for bacterial infection are widely sought, with particular interest in the applications for bacteriophages (phages) as a biocontrol or therapeutic agent. The current study uses a wild highly lytic phage isolated from cow’s milk taken from three farms in Baghdad, Iraq. The resulting phage was able to rescue 100% of the mice from a median lethal dose (LD50) or (1 × 108 CFU mL-1 per mouse) for MRSA wild isolates achieved when the phage: bacteria ratio was 100:1. Even when treatment was delayed for 6 h post lethal infection, to the point where all mice were moribund, 80% of them were rescued by a single injection of this phage preparation. Based on the current results, a comprehensive study is needed to guide further research on the MRSA phage as a biocontrol for MRSA mastitis in dairy cows to replace or reduce the use of antibiotics in animal husbandry.
基金supported by the National Natural Science Foundation of China(Grant No.21827811)Research and development plan of key areas in Hunan Province(Grant No.2019SK2201)Innovation science and technology plan of Hunan Province(Grant No.2017XK2103).
文摘Investigation of metal–organic frameworks(MOFs)for biomedical applications has attracted much attention in recent years.MOFs are regarded as a promising class of nanocarriers for drug delivery owing to well-defined structure,ultrahigh surface area and porosity,tunable pore size,and easy chemical functionalization.In this review,the unique properties of MOFs and their advantages as nanocarriers for drug delivery in biomedical applications were discussed in the first section.Then,state-ofthe-art strategies to functionalize MOFs with therapeutic agents were summarized,including surface adsorption,pore encapsulation,covalent binding,and functional molecules as building blocks.In the third section,the most recent biological applications of MOFs for intracellular delivery of drugs,proteins,and nucleic acids,especially aptamers,were presented.Finally,challenges and prospects were comprehensively discussed to provide context for future development of MOFs as efficient drug delivery systems.
文摘It is of great knowledge nowadays that the use of fossil fuels is responsible for the emission of gases that intensify the greenhouse effect, which threatens the survival of the humankind. The gravity of this fact could be mitigated through the indirect use of solar energy for fuels derived from vegetable that can be planted and cultivated by the world of renewable and non-polisher. Microalgae play an important role in this regard, as they have promising characteristics as potential raw material for the production of biofuels, able to absorb large amounts of CO2. Chlorophyll organisms convert these simple substances in the atmosphere, absorbing sunlight into chemical energy stored, that is, compounds with high energy, biomass can also be used to obtain biocompounds human nutritional supplement and food animal, however, have been found an important number of difficulties to economically viable production like high cost of production of dry biomass and oil extraction. Here, we review the main approaches of biorefinery concept appearing as an alternative to achieve economic viability of the production of bio-diesel based on microalgae. The major points are the following: 1) use of re-residual water, 2) marketing of Carbon Credits, and 3) development of co-products resulting from high value added.
文摘At present, Brazil imports approximately 11 billion liters/year of diesel. With the interruption of the works in the new Petrobras refineries, the projection is that by 2025 this volume will increase to 24.2 billion liters of diesel/year. In this sense, the biodiesel factory Grand Valle Bio Energy Ltda., located in the state of Rio de Janeiro, in conjunction with the FAPERJ makes some investments in technology development for the cultivation and use of microalgae as an alternative raw material in the production of biodiesel. Based on arguments previously said, this work presents the results of the microalgae cultivation Monoraphidium sp. in photobioreactors the pilot plant of the company. The installation with an area of 120 m2 is included with 2 open photobioreactors of type falling film (20 m × 1 m), with a cascade of 18mm and capacity of 4000 L. The lineage cultivated is selected from previous ecophysiological studies that are identified as promising for biodiesel production by having a high potential for the production of lipids. This lineage is maintained at collection of the stock of cultures Laboratory of Green Technologies of the School of Chemistry/ UFRJ. The cultivation was performed in means ASM-1 (Gorham et al., 1964), initial pH 8.0, with aeration and circulation average of 8 hours a day during 19 days. The culture was started with an inoculum of 1 × 107 cel/ml. The lipid production was determined in two phases of growth: on day 4 (exponential phase) and 15 day (stationary phase). For the determination and quantification of lipid content, two different methods were assessed for a sample of biomass, submitted to the same processes the separation and drying. The results showed the methodology of Bligh & Dyer with modifications as the most efficient in extracting lipids. The total lipid content of the biomass Monoraphidium sp. was 30.58%. The growth rate varied between 0.74 ± 0.01 and 0.68 ± 0.02.
基金financial support from the Universiti Teknologi PETRONAS via YUTP-FRG(0153AA-E48)
文摘The disposal of spent activated carbon(AC) will inevitably create secondary pollution. In overcoming this problem, the spent AC can be regenerated by means of biological approach. Bioregeneration is the phenomenon in which through the action of microorganisms, the adsorbed pollutants on the surface of the AC will be biodegraded and this enables further adsorption of pollutants to occur with time elapse. This review provides the challenges and perspectives for effective bioregeneration to occur in biological activated carbon(BAC)column. Owing to very few reported works on the bioregeneration rate in BAC column, emphasis is put forward on the recently developed models of bioregeneration kinetic in batch system. All in all, providing potential solutions in increasing the lifespan of AC and the enhancement of bioregeneration rate will definitely overcome the bottlenecks in spent AC bioregeneration.
文摘In fifty years, laser technology has made great progress, and its many applications make it essential in everyday life. However, this technology is still open to numerous developments. Across multiple applications, there is particular focus in the field of medicine, for diagnosis for tailored therapies, and as a research tool in biology. Whereas its use is now well-demonstrated in ophthalmologic and dermatologic treatments, and surgery, one of the most fascinating aspects of laser technology in the field of biology emerged in the late 1990s with the development of devices able to perform fine dissections of biological tissues using a laser beam. The so-called laser-associated microdissection offers a rapid, precise method of isolating and removing targeted cells or groups of cells from complex biological tissues. It represents the missing link between clinical observations and the intrinsic physiological mechanisms of biological tissues. The molecular examination of pathologically altered cells and tissues for DNA, RNA, and protein expression has revolutionized research and diagnosis in pathology, enabling assessment of the role of the cell type in the normal physiological or disease process. Alongside conventional diagnostic and therapeutic approaches, another field of application contribute to the development of targeted treatments at the nanoscale level of laser technology, mainly in the field of cancer, leading to design new and innovative strategies in drug delivery and image-guided surgery. Most of these approaches, but although not exhaustively, will be presented here.
基金supported by the management of VIT University for intramural research fund(RGEMS-2017)
文摘Objective: To examine the survivability and stability of probiotic strains in presence and absence of pharmaceutical excipients for a long period of time at(4 ± 1)℃.Methods: The survival rates of probiotic strains, Pediococcus pentosaceus GS4(MTCC12683)(NCBI HM044322), GS17(NCBI KJ608061) and Lactobacillus gasseri(ATCC 19992), were evaluated. Probiotic strains were lyophilized individually and in combination of excipients(sorbitol, ascorbic acid, fructose and skim milk). The preparation was monitored for 120 d storing at(4 ± 1)℃. During storage, all the preparations were evaluated for viability and stability of probiotic properties like lactic acid production, antimicrobial effect, water activity, and adherence to epithelial cells.Results: Sorbitol, ascorbic acid and skim milk favoured the viability of freeze-dried cells and sustained probiotic properties during storage. Without excipients(control group),strains showed percentage of survivability not more than 70% while strains with excipients survived for 73%–93% for a long period of time.Conclusions: Commonly used excipients can be considered as a vehicle for delivering active principle in probiotic formulation and for sustaining the viability and stability of probiotic strains for a period of 120 d.
文摘Scleritis and other autoimmune diseases are characterized by an imbalance in the levels of pro-inflammatory and anti-inflammatory molecules with the balance tilted more towards the former due to the failure of recognition of self. The triggering of inflammatory process could be ascribed to the presence of cytoplasmic DNA/chromatin that leads to activation of cytosolic DNA-sensing c GAS-STING(cyclic GMP-AMP synthase linked to stimulator of interferon genes) pathway and enhanced expression of NF-κB that results in an increase in the production of pro-inflammatory bioactive lipids. Bioactive lipids gamma-linolenic acid(GLA), dihomoGLA(DGLA), prostaglandin E1(PGE1), prostacyclin(PGI2) and lipoxin A4, resolvins, protectins and maresins have antiinflammatory actions, bind to DNA to render it non-antigenic and are decreased in autoimmune diseases. These results suggest that efforts designed to enhance the production of anti-inflammatory bioactive lipids may form a new approach to autoimmune diseases. Local injection or infusion of lipoxins, resolvins, protectins and maresins or their precursors such as arachidonic acid may be exploited in the prevention and management of autoimmune diseases including scleritis, uveitis and lupus/rheumatoid arthritis.
基金Technical Supporting Programs funded by Ministry of Science and Technology (MOST) of China(No. 2006BAD07A14 No. 2006BDA11A11)
文摘Facing the pressure of fossil energy exhaustion and environment pollution, people begin to search for clean and renewable energy to partly substitute fossil energy and realize sustainable development. As the fourth type of energy, biomass energy has many advantages: wide distribution, large quantity, being renewable, clean, storable and transportable and so on. By adopting thermo-chemical and biochemical technologies, biomass energy can be converted to high quality solid, liquid and gaseous energy products, and provide convenient heat and power energy for human being’s production and daily life. This paper presented the status quo of biomass power generation industry in China and also introduced briefly the future development models.
基金supported by the National Research Foundation of Korea(NRF)grant funded by the Korea government(MSIT)(No.2019R1F1A1056904).
文摘Background:Endolysins,the bacteriophage-originated peptidoglycan hydrolases,are a promising replacement for antibiotics due to immediate lytic activity and no antibiotic resistance.The objectives of this study were to investigate the lytic activity of endolysin LyJH307 against S.bovis and to explore changes in rumen fermentation and microbiota in an in vitro system.Two treatments were used:1)control,corn grain without LyJH307;and 2)LyJH307,corn grain with LyJH307(4 U/mL).An in vitro fermentation experiment was performed using mixture of rumen fluid collected from two cannulated Holstein steers(450±30 kg)and artificial saliva buffer mixed as 1:3 ratio for 12 h incubation time.In vitro dry matter digestibility,pH,volatile fatty acids,and lactate concentration were estimated at 12 h,and the gas production was measured at 6,9,and 12 h.The rumen bacterial community was analyzed using 16S rRNA amplicon sequencing.Results:LyJH307 supplementation at 6 h incubation markedly decreased the absolute abundance of S.bovis(approximately 70% compared to control,P=0.0289)and increased ruminal pH(P=0.0335)at the 12 h incubation.The acetate proportion(P=0.0362)was significantly increased after LyJH307 addition,whereas propionate(P=0.0379)was decreased.LyJH307 supplementation increased D-lactate(P=0.0340)without any change in L-lactate concentration(P>0.10).There were no significant differences in Shannon’s index,Simpson’s index,Chao1 estimates,and evenness(P>0.10).Based on Bray-Curtis dissimilarity matrices,the LyJH307 affected the overall shift in microbiota(P=0.097).LyJH307 supplementation induced an increase of 11 genera containing Lachnoclostridium,WCHB1-41,unclassified genus Selenomonadaceae,Paraprevotella,vadinBE97,Ruminococcus gauvreauii group,Lactobacillus,Anaerorhabdus furcosa group,Victivallaceae,Desulfuromonadaceae,and Sediminispirochaeta.The predicted functional features represented by the Kyoto Encyclopedia of Genes and Genomes pathways were changed by LyJH307 toward a decrease of carbohydrate metabolism.Conclusions:LyJH307 caused a reduction of S.bovis and an increase of pH with shifts in minor microbiota and its metabolic pathways related to carbohydrate metabolism.This study provides the first insight into the availability of endolysin as a specific modulator for rumen and shows the possibility of endolysin degradation by rumen microbiota.