Physics-informed neural networks(PINNs)are proved methods that are effective in solving some strongly nonlinear partial differential equations(PDEs),e.g.,Navier-Stokes equations,with a small amount of boundary or inte...Physics-informed neural networks(PINNs)are proved methods that are effective in solving some strongly nonlinear partial differential equations(PDEs),e.g.,Navier-Stokes equations,with a small amount of boundary or interior data.However,the feasibility of applying PINNs to the flow at moderate or high Reynolds numbers has rarely been reported.The present paper proposes an artificial viscosity(AV)-based PINN for solving the forward and inverse flow problems.Specifically,the AV used in PINNs is inspired by the entropy viscosity method developed in conventional computational fluid dynamics(CFD)to stabilize the simulation of flow at high Reynolds numbers.The newly developed PINN is used to solve the forward problem of the two-dimensional steady cavity flow at Re=1000 and the inverse problem derived from two-dimensional film boiling.The results show that the AV augmented PINN can solve both problems with good accuracy and substantially reduce the inference errors in the forward problem.展开更多
隐喻是人类语言中经常出现的一种特殊现象,隐喻识别对于自然语言处理各项任务来说具有十分基础和重要的意义。针对中文领域的隐喻识别任务,该文提出了一种基于句法感知图卷积神经网络和ELECTRA的隐喻识别模型(S yntax-a ware G CN with ...隐喻是人类语言中经常出现的一种特殊现象,隐喻识别对于自然语言处理各项任务来说具有十分基础和重要的意义。针对中文领域的隐喻识别任务,该文提出了一种基于句法感知图卷积神经网络和ELECTRA的隐喻识别模型(S yntax-a ware G CN with E LECTRA,SaGE)。该模型从语言学出发,使用ELECTRA和Transformer编码器抽取句子的语义特征,将句子按照依存关系组织成一张图并使用图卷积神经网络抽取其句法特征,在此基础上对两类特征进行融合以进行隐喻识别。该模型在CCL 2018中文隐喻识别评测数据集上以85.22%的宏平均F 1值超越了此前的最佳成绩,验证了融合语义信息和句法信息对于隐喻识别任务具有重要作用。展开更多
In today’s competitive business environment,strategic performance management(SPM)is crucial for continuous growth and innovation.Therefore,it is important to realize the advantages of SPM in enterprise applications.T...In today’s competitive business environment,strategic performance management(SPM)is crucial for continuous growth and innovation.Therefore,it is important to realize the advantages of SPM in enterprise applications.This paper analyzes the theoretical basis,implementation framework,and application effects of SPM in enterprises by examining actual cases from different industries.It reveals the core elements of an effective performance management system,including clear goal setting,reasonable performance indicators,and periodic performance evaluations.Additionally,the paper examines the impact of China’s specific economic policy environment on the implementation of SPM and proposes strategies to optimize performance management practices,ultimately promoting the achievement of strategic goals.This paper provides specific and personalized practical guidance for enterprises.展开更多
The goal of street-to-aerial cross-view image geo-localization is to determine the location of the query street-view image by retrieving the aerial-view image from the same place.The drastic viewpoint and appearance g...The goal of street-to-aerial cross-view image geo-localization is to determine the location of the query street-view image by retrieving the aerial-view image from the same place.The drastic viewpoint and appearance gap between the aerial-view and the street-view images brings a huge challenge against this task.In this paper,we propose a novel multiscale attention encoder to capture the multiscale contextual information of the aerial/street-view images.To bridge the domain gap between these two view images,we first use an inverse polar transform to make the street-view images approximately aligned with the aerial-view images.Then,the explored multiscale attention encoder is applied to convert the image into feature representation with the guidance of the learnt multiscale information.Finally,we propose a novel global mining strategy to enable the network to pay more attention to hard negative exemplars.Experiments on standard benchmark datasets show that our approach obtains 81.39%top-1 recall rate on the CVUSA dataset and 71.52%on the CVACT dataset,achieving the state-of-the-art performance and outperforming most of the existing methods significantly.展开更多
This paper analyzes the characteristics of emotion state and group behavior in the evacuation process.During the emergency evacuation,emotion state and group behavior are interacting with each other,and indivisible.Th...This paper analyzes the characteristics of emotion state and group behavior in the evacuation process.During the emergency evacuation,emotion state and group behavior are interacting with each other,and indivisible.The emotion spread model with the effect of group behavior,and the leader-follower model with the effect of emotion state are proposed.On this basis,exit choice strategies with the effect of emotion state and group behavior are proposed.Fusing emotion spread model,leader-follower model,and exit choice strategies into a cellular automata(CA)-based pedestrian simulation model,we simulate the evacuation process in a multi-exit case.Simulation results indicate that panic emotion and group behavior are two negative influence factors for pedestrian evacuation.Compared with panic emotion or group behavior only,pedestrian evacuation efficiency with the effects of both is lower.展开更多
预训练语言模型(pre-trained languages model,PTLM)在自然语言处理(natural language processing,NLP)领域取得了令人瞩目的成功,并由此引发了下游任务从监督学习到预训练-微调范式的转变。在此之后,一系列预训练模型的创新研究涌现出...预训练语言模型(pre-trained languages model,PTLM)在自然语言处理(natural language processing,NLP)领域取得了令人瞩目的成功,并由此引发了下游任务从监督学习到预训练-微调范式的转变。在此之后,一系列预训练模型的创新研究涌现出来。本文系统性、全面的回顾了自然语言处理的代表性工作和最新进展,并按照类别系统性的介绍了自然语言处理领域的预训练模型。首先我们简要介绍了预训练模型,以及不同的模型特点和框架。之后,我们介绍并分析了预训练模型的影响和挑战以及下游任务中的应用。最后,我们简要总结并阐述了预训练模型未来的研究方向。展开更多
Content-based 3D model retrieval is of great help to facilitate the reuse of existing designs and to inspire designers during conceptual design. However, there is still a gap to apply it in industry due to the low tim...Content-based 3D model retrieval is of great help to facilitate the reuse of existing designs and to inspire designers during conceptual design. However, there is still a gap to apply it in industry due to the low time efficiency. This paper presents two new methods with high efficiency to build a Content-based 3D model retrieval system. First, an improvement is made on the "Shape Distribution (D2)" algorithm, and a new algorithm named "Quick D2" is proposed. Four sample 3D mechanical models are used in an experiment to compare the time cost of the two algorithms. The result indicates that the time cost of Quick D2 is much lower than that of D2, while the descriptors extracted by the two algorithms are almost the same. Second, an expandable 3D model repository index method with high performance, namely, RBK index, is presented. On the basis of RBK index, the search space is pruned effectively during the search process, leading to a speed up of the whole system. The factors that influence the values of the key parameters of RBK index are discussed and an experimental method to find the optimal values of the key parameters is given. Finally, "3D Searcher", a content-based 3D model retrieval system is developed. By using the methods proposed, the time cost for the system to respond one query online is reduced by 75% on average. The system has been implemented in a manufacturing enterprise, and practical query examples during a case of the automobile rear axle design are also shown. The research method presented shows a new research perspective and can effectively improve the content-based 3D model retrieval efficiency.展开更多
基金Project supported by the Fundamental Research Funds for the Central Universities of China(No.DUT21RC(3)063)the National Natural Science Foundation of China(No.51720105007)the Baidu Foundation(No.ghfund202202014542)。
文摘Physics-informed neural networks(PINNs)are proved methods that are effective in solving some strongly nonlinear partial differential equations(PDEs),e.g.,Navier-Stokes equations,with a small amount of boundary or interior data.However,the feasibility of applying PINNs to the flow at moderate or high Reynolds numbers has rarely been reported.The present paper proposes an artificial viscosity(AV)-based PINN for solving the forward and inverse flow problems.Specifically,the AV used in PINNs is inspired by the entropy viscosity method developed in conventional computational fluid dynamics(CFD)to stabilize the simulation of flow at high Reynolds numbers.The newly developed PINN is used to solve the forward problem of the two-dimensional steady cavity flow at Re=1000 and the inverse problem derived from two-dimensional film boiling.The results show that the AV augmented PINN can solve both problems with good accuracy and substantially reduce the inference errors in the forward problem.
文摘隐喻是人类语言中经常出现的一种特殊现象,隐喻识别对于自然语言处理各项任务来说具有十分基础和重要的意义。针对中文领域的隐喻识别任务,该文提出了一种基于句法感知图卷积神经网络和ELECTRA的隐喻识别模型(S yntax-a ware G CN with E LECTRA,SaGE)。该模型从语言学出发,使用ELECTRA和Transformer编码器抽取句子的语义特征,将句子按照依存关系组织成一张图并使用图卷积神经网络抽取其句法特征,在此基础上对两类特征进行融合以进行隐喻识别。该模型在CCL 2018中文隐喻识别评测数据集上以85.22%的宏平均F 1值超越了此前的最佳成绩,验证了融合语义信息和句法信息对于隐喻识别任务具有重要作用。
文摘In today’s competitive business environment,strategic performance management(SPM)is crucial for continuous growth and innovation.Therefore,it is important to realize the advantages of SPM in enterprise applications.This paper analyzes the theoretical basis,implementation framework,and application effects of SPM in enterprises by examining actual cases from different industries.It reveals the core elements of an effective performance management system,including clear goal setting,reasonable performance indicators,and periodic performance evaluations.Additionally,the paper examines the impact of China’s specific economic policy environment on the implementation of SPM and proposes strategies to optimize performance management practices,ultimately promoting the achievement of strategic goals.This paper provides specific and personalized practical guidance for enterprises.
基金National Natural Science Foundation of China,Grant/Award Number:62106177supported by the Central University Basic Research Fund of China(No.2042020KF0016)supported by the supercomputing system in the Supercomputing Center of Wuhan University.
文摘The goal of street-to-aerial cross-view image geo-localization is to determine the location of the query street-view image by retrieving the aerial-view image from the same place.The drastic viewpoint and appearance gap between the aerial-view and the street-view images brings a huge challenge against this task.In this paper,we propose a novel multiscale attention encoder to capture the multiscale contextual information of the aerial/street-view images.To bridge the domain gap between these two view images,we first use an inverse polar transform to make the street-view images approximately aligned with the aerial-view images.Then,the explored multiscale attention encoder is applied to convert the image into feature representation with the guidance of the learnt multiscale information.Finally,we propose a novel global mining strategy to enable the network to pay more attention to hard negative exemplars.Experiments on standard benchmark datasets show that our approach obtains 81.39%top-1 recall rate on the CVUSA dataset and 71.52%on the CVACT dataset,achieving the state-of-the-art performance and outperforming most of the existing methods significantly.
基金Project supported by the National Key Research and Development Program of China(Grant No.2017YFC0803903)the National Natural Science Foundation of China(Grant No.62003182)。
文摘This paper analyzes the characteristics of emotion state and group behavior in the evacuation process.During the emergency evacuation,emotion state and group behavior are interacting with each other,and indivisible.The emotion spread model with the effect of group behavior,and the leader-follower model with the effect of emotion state are proposed.On this basis,exit choice strategies with the effect of emotion state and group behavior are proposed.Fusing emotion spread model,leader-follower model,and exit choice strategies into a cellular automata(CA)-based pedestrian simulation model,we simulate the evacuation process in a multi-exit case.Simulation results indicate that panic emotion and group behavior are two negative influence factors for pedestrian evacuation.Compared with panic emotion or group behavior only,pedestrian evacuation efficiency with the effects of both is lower.
文摘预训练语言模型(pre-trained languages model,PTLM)在自然语言处理(natural language processing,NLP)领域取得了令人瞩目的成功,并由此引发了下游任务从监督学习到预训练-微调范式的转变。在此之后,一系列预训练模型的创新研究涌现出来。本文系统性、全面的回顾了自然语言处理的代表性工作和最新进展,并按照类别系统性的介绍了自然语言处理领域的预训练模型。首先我们简要介绍了预训练模型,以及不同的模型特点和框架。之后,我们介绍并分析了预训练模型的影响和挑战以及下游任务中的应用。最后,我们简要总结并阐述了预训练模型未来的研究方向。
基金supported by National Natural Science Foundation of China(Grant No. 51175287)National Science and Technology Major Project(Grant No. 2011ZX02403)
文摘Content-based 3D model retrieval is of great help to facilitate the reuse of existing designs and to inspire designers during conceptual design. However, there is still a gap to apply it in industry due to the low time efficiency. This paper presents two new methods with high efficiency to build a Content-based 3D model retrieval system. First, an improvement is made on the "Shape Distribution (D2)" algorithm, and a new algorithm named "Quick D2" is proposed. Four sample 3D mechanical models are used in an experiment to compare the time cost of the two algorithms. The result indicates that the time cost of Quick D2 is much lower than that of D2, while the descriptors extracted by the two algorithms are almost the same. Second, an expandable 3D model repository index method with high performance, namely, RBK index, is presented. On the basis of RBK index, the search space is pruned effectively during the search process, leading to a speed up of the whole system. The factors that influence the values of the key parameters of RBK index are discussed and an experimental method to find the optimal values of the key parameters is given. Finally, "3D Searcher", a content-based 3D model retrieval system is developed. By using the methods proposed, the time cost for the system to respond one query online is reduced by 75% on average. The system has been implemented in a manufacturing enterprise, and practical query examples during a case of the automobile rear axle design are also shown. The research method presented shows a new research perspective and can effectively improve the content-based 3D model retrieval efficiency.