A systematic study on the electrical load forecasting for large-scale iron and steel companies was made. After analyzing the electrical load's characteristics, an algorithm framework for the load forecasting in iron ...A systematic study on the electrical load forecasting for large-scale iron and steel companies was made. After analyzing the electrical load's characteristics, an algorithm framework for the load forecasting in iron and steel complex was formulated based on model combination and scheme filtration. The algorithm features data quality self- adaptation, convenient forecasting model extension, easy practical application, etc. , and has been successfully applied in Baoshan Iron and Steel Co Ltd, Shanghai, China, resulting in great economic benefit.展开更多
The electrochemical nature of reaction between melt and slag in a closed system was worked out. Experimental results demonstrated that both the rate and reaction extent increase when the electronic conductor or voltag...The electrochemical nature of reaction between melt and slag in a closed system was worked out. Experimental results demonstrated that both the rate and reaction extent increase when the electronic conductor or voltage was applied between melt and slag. The bigger the contact area of the conductor with melts is, the faster the reaction rate is. With the increase of applied voltage which is beneficial for electron's migration between metal and slags, the rate and extent of reaction increase.展开更多
In a typical process, C-Mn steel was annealed at 800℃ for 180 s, and then cooled rapidly to obtain the ferrite-martensite microstructure. After pre-straining, the specimens were baked and the corresponding bake-harde...In a typical process, C-Mn steel was annealed at 800℃ for 180 s, and then cooled rapidly to obtain the ferrite-martensite microstructure. After pre-straining, the specimens were baked and the corresponding bake-hardening (BH) values were determined as a function of pre-strain, baking temperature, and baking time. The influences ofpre-strain, baking temperature and baking time on the microstructure evolution and bake-hardening behavior of the dual-phase steel were investigated systematically. It was found that the BH value apparently increased with an increase in pre-strain in the range from 0 to 1%; however, increasing pre-strain from 1% to 8% led to a decrease in the BH value. Furthermore, an increase in baking temperature favored a gradual improvement in the BH value because of the formation of Cottrell atmosphere and the precipitation of carbides in both the ferrite and martensite phases. The BH value reached a maximum of 110 MPa at a baking temperature of 300℃. Moreover, the BH value enhanced significantly with increasing baking time from 10 to 100 min.展开更多
Three low-carbon dual-phase (DP) steels with almost constant martensite contents of 20vo1% were produced by intercritical annealing at different heating rates and soaking temperatures. Microstructures prepared at lo...Three low-carbon dual-phase (DP) steels with almost constant martensite contents of 20vo1% were produced by intercritical annealing at different heating rates and soaking temperatures. Microstructures prepared at low temperature (1043 K, FH1) with fast-heating (300 K/s) show banded ferrite/martensite structure, whereas those soaked at high temperature (1103 K, FH2) with fast heating reveal blocky martensite uniformly distributed in the fine-grained ferrite matrix. Their mechanical properties were tested under tensile conditions and compared to a slow-heated (5 K/s) reference material (SH0). The tensile tests indicate that for a given martensite volume fraction, the yield strength and total elongation values are noticeably affected by the refinement of ferrite grains and the martensite morphology. Metallographic observations reveal the formation of microvoids at the ferrite/martensite interface in the SH0 and FH2 samples, whereas microvoids nucleate via the fracture of banded martensite particles in the FH1 specimen. In addition, analyses of the work-hardening behaviors of the DP microstructures using the differential Crussard-Jaoul technique demonstrate two stages of work hardening for all samples.展开更多
Isothermal transformation (TTT) behavior of the low carbon steels with two Si contents (0.50 wt pct and 1.35 wt pct) was investigated with and without the prior deformation. The results show that Si and the prior ...Isothermal transformation (TTT) behavior of the low carbon steels with two Si contents (0.50 wt pct and 1.35 wt pct) was investigated with and without the prior deformation. The results show that Si and the prior deformation of the austenite have significant effects on the transformation of the ferrite and bainite. The addition of Si refines the ferrite grains, accelerates the polygonal ferrite transformation and the formation of M/A constituents, leading to the improvement of the strength. The ferrite grains formed under the prior deformation of the austenite become more homogeneous and refined. However, the influence of deformation on the tensile strength of both steels is dependent on the isothermal temperatures. Thermodynamic calculation indicates that Si and prior deformation reduce the incubation time of both ferrite and bainite transformation, but the effect is weakened by the decrease of the isothermal temperatures.展开更多
An interfacial study between molten iron and the prereduced ilmenite with carbon was conducted at different melting temperatures by the sessile droplet method.The wetting characteristics between molten iron and the pr...An interfacial study between molten iron and the prereduced ilmenite with carbon was conducted at different melting temperatures by the sessile droplet method.The wetting characteristics between molten iron and the prereduced ilmenites with carbon were investigated by measuring contact angle of the droplet of molten iron on the prereduced ilmenite substrate.The images of the interface were also examined by the optical microscope and SEM equipped with EDS.The volume of molten iron increased with the melting temperature increasing when titania or high-content titania slag was used as the substrate.The contact angle decreased with the melting temperature increasing and it was independent on time at constant temperature.The contact angle was positively correlated with the reduction degree of the ilmenite,but the work of adhesion was negatively correlated with it.Higher smelting temperature was beneficial to the separation of iron and Ti oxides.The permeability of molten iron into the prereduced ilmenite with carbon was more obvious with reduction degree increasing owing to the high porosity of prereduced ilmenite.展开更多
With the increasing requirements for reducing the weight and emission of automobiles, the automobile manufacturers turn to use the high strength steel. Car chassis as an important component has complex shape and is di...With the increasing requirements for reducing the weight and emission of automobiles, the automobile manufacturers turn to use the high strength steel. Car chassis as an important component has complex shape and is difficult to form. As the strength of design steel strength increases from about 400MPa to 590MPa, the steel hole expansion rate becomes a crucial indicator which needs to be over 75%.展开更多
A double-parameter oxygen lance used in a 300 t converter was designed to improve the metallurgical performance. A small-scale measurement of the jet behavior was done using a computer controlled scanning system. The ...A double-parameter oxygen lance used in a 300 t converter was designed to improve the metallurgical performance. A small-scale measurement of the jet behavior was done using a computer controlled scanning system. The experimental data on the velocity distribution at the jet centerline, the contour map of the jet velocity, the deviation of the jet centerline, and the velocity distribution of the axial section were compiled. According to the results of the small-scale measurement, the double-parameter lance was also employed for a BOF experiment. The metallurgy inde- xes show that the metallurgical performance was highly promoted by use of the double-parameter lance.展开更多
U-channel forming tests were performed to investigate the surface topography evolvement of hot-dip galvanized(GI) and galvannealed(GA) steels and the effects of die hardness on sheet metal forming(SMF). Experimental r...U-channel forming tests were performed to investigate the surface topography evolvement of hot-dip galvanized(GI) and galvannealed(GA) steels and the effects of die hardness on sheet metal forming(SMF). Experimental results indicate that the surface roughness values of the two galvanized steels increase with the number of forming,i.e.,the surface topographies of galvanized steels are roughened in SMF. Moreover,GI steel has a better ability of damage-resistance than GA steel. The mechanisms of topography evolvement are different in the forming of GI and GA steels. Scratch is the main form of surface damage in the forming of GI steels. The severity of scratch can be decreased by increasing die hardness. GA steel results in exfoliating of the coating firstly and then severe scratching. The surface topography of galvannealed steels can be improved by increasing die hardness. However,the hardness should not be too high.展开更多
The time-temperature-transformation (TTT) curve of the 00Cr25Ni7Mo4N duplex stainless steel was obtained with a Formastor-digital thermal dilatometer, and the influence of isothermal aging on o precipitation was stu...The time-temperature-transformation (TTT) curve of the 00Cr25Ni7Mo4N duplex stainless steel was obtained with a Formastor-digital thermal dilatometer, and the influence of isothermal aging on o precipitation was studied by metallographic observation, X-ray diffraction (XRD), and transmission electron microscopy (TEM). The results show that the decomposition of ferrite phase is accompanied by the formation of σ phase at 750-1000℃, especially in the range of 800-900℃. The longer the aging time, the higher the amount of o precipi- tation. The area fxaction of various phases remains at a certain value upon the completion of ferrite deformation. The temperature of 850℃ is the most sensitive transaction temperature, the incubation time for the formation of o precipitation is less than 1 min, and aging for 20 min leads to the complete transformation of ferrite. The o phase is formed preferentially at the α/α/γjunction, and then grows along the α/α boundary in the matrix.展开更多
A coupled thermo-mechanical model containing metal flow and temperature field for calculating temperature variation has been developed on fourteen-pass hot continuous rolling of round rod for Inconel 718 alloy using 3...A coupled thermo-mechanical model containing metal flow and temperature field for calculating temperature variation has been developed on fourteen-pass hot continuous rolling of round rod for Inconel 718 alloy using 3D elastic-plastic finite element method (FEM). The temperature of characteristic analysis points in the intermediate cross-section of the workpiece has been simulated at initial temperature ranging from 960 to 1000 ℃ and initial velocity in range of 0.15-0.55 m·s^-1. Based on finite element analysis and microstructural observation in cylindrical hot compression experiments, the appropriate hot continuous rolling technologies have been designed for rod products with different diameters. For a real rolling practice, the simulated surface temperature was examined and is in good agreement with the measured one.展开更多
To resolve the difficulty in slag formation during steelmaking with low silicon hot metal and to increase productivity, a new 5-hole lance was developed by increasing oxygen flow from 50 000 m^3/h to 60 000 m^3/h. Syn...To resolve the difficulty in slag formation during steelmaking with low silicon hot metal and to increase productivity, a new 5-hole lance was developed by increasing oxygen flow from 50 000 m^3/h to 60 000 m^3/h. Synthetic slag was added to adjust the slag composition. The problems such as difficulty in dephosphorization and slag adhesion to oxygen lance and hood were settled. Steel production and metal yield were increased and the nozzle life was prolonged through these techniques.展开更多
In a typical process, low carbon steel was annealed at two different temperatures (660℃ and 750℃), and then was temper rolled to improve the mechanical properties. Pre-straining and baking treatments were subseque...In a typical process, low carbon steel was annealed at two different temperatures (660℃ and 750℃), and then was temper rolled to improve the mechanical properties. Pre-straining and baking treatments were subsequently carried out to measure the bake-hardening (BH) values. The influences of annealing temperature and temper rolling on the BH behavior of the steel were investigated. The results indicated that the microstructure evolution during temper rolling was related to carbon atoms and dislocations. After an apparent increase, the BH value of the steel significantly decreased when the temper rolling reduction was increased from 0%to 5%. This was attributed to the increase in solute carbon concentration and dislocation density. The maximum BH values of the steel annealed at 660℃ and 750℃ were 80 MPa and 89 MPa at the reductions of 3%and 4%, respectively. Moreover, increasing the annealing temperature from 660 to 750℃ resulted in an ob-vious increase in the BH value due to carbide dissolution.展开更多
A roll shape setting model was built for the hot galvanizing and planishing mill. The uniform transversal distributions of the front tension in the exit and the unit pressure were considered as the objective function....A roll shape setting model was built for the hot galvanizing and planishing mill. The uniform transversal distributions of the front tension in the exit and the unit pressure were considered as the objective function. At the same time, the quality of the products, the stability of zinc layer, and the homogeneity of spangles were of considerable significance in the planishing process. The model was applied to the roll shape setting of the 1800 cold rolling 3# CGL hot galvanizing and planishing mill of Baosteel Co Ltd. After being planished, the flatness of a strip that was less than 6 I was more than 97%, and the flatness of others were less than 10 I; the pass percentage of the zinc lay- ers reached 100%.展开更多
The fatigue behavior of high speed steel (HSS) roll materials for hot rolling was researched under watercooling conditions by laser impacting. The microstructure of HSS sample and the morphologies of fatigue samples...The fatigue behavior of high speed steel (HSS) roll materials for hot rolling was researched under watercooling conditions by laser impacting. The microstructure of HSS sample and the morphologies of fatigue samples were observed by scanning electron microscope. The phase structure was detected by XRD. The morphology of situ oxide scale was observed by optical microscope, and the expansion coefficient was measured by TGA. The experiment results indicate that the cracks come into being at the carbide-matrix interface, but there are no cracks in the matrix after many times of laser impacting treatment, for the situ sample taken from the fractured roll surface, big carbides are more sensitive to the fatigue, and peel off prior to small ones. The relevant fatigue mechanisms are also discussed.展开更多
Field emission-scanning electron microscopy(FE-SEM) technique was employed to observe the shape, size and distribution of AlN+MnS inclusions in oriented electrical steels. Specimens used for FE-SEM observation were de...Field emission-scanning electron microscopy(FE-SEM) technique was employed to observe the shape, size and distribution of AlN+MnS inclusions in oriented electrical steels. Specimens used for FE-SEM observation were deeply electrolytic etched at room temperature in non-aqueous acetylacetone(AA) solution. The results indicate that the FE-SEM technique has obvious advantage in specimen preparation. Therefore, it can be easily used to identify the AlN+MnS inclusions and even copper nano-particles in oriented electrical steels with the same analysis accuracy as that by TEM. This technique is a good substitute for TEM and the associated specimen preparation in the observation of inclusions in electrical steels. It will be a powerful technique for routine analysis in the production of grain oriented electrical steels.展开更多
To explore the application of severe plastic deformation for grain refinement in steel production, a new method called continuous frictional angular extrusion (CFAE) was applied to refine the grain of interstitial-f...To explore the application of severe plastic deformation for grain refinement in steel production, a new method called continuous frictional angular extrusion (CFAE) was applied to refine the grain of interstitial-free steel. The deformation was carried out at room temperature and individual sheet specimens were processed in different number of passes. An overall grain size of 200nm was achieved after 8 passes and the proportion of high-angle boundaries to the total boundaries was more than 60%. Through the characterization of high resolution EBSD, X-ray diffraction (XRD) and hardness testing,this paper discussed the evolution of microstructures and textures during deformation and explored the development direction of the method.展开更多
Tempered tool steel 5Cr15MoV was normalized at different temperatures followed by air-cooling. It is found that the hardness increases with the increment of a normalizing temperature from 950℃ to 1 150℃, and it then...Tempered tool steel 5Cr15MoV was normalized at different temperatures followed by air-cooling. It is found that the hardness increases with the increment of a normalizing temperature from 950℃ to 1 150℃, and it then decreases with the temperature getting higher. The Thermo-calc calculation reveales that the mole fraction of carbides decreases when the normalizing temperature increases,which indicates that more carbon dissolved in the matrix enhances the hardness of the steel. However,the existence of retained austenite causes hardness reduction when the normalizing temperature is over 1 150℃. The salt spray test shows that the steel possesses poor corrosion resistance when it is normalized at a temperature above 1 100℃. The precipitation of the carbides in the cooling process creates a number of chromium-depleted zones, making the steel vulnerable to corrosives. In the present work, an appropriate normalizing temperature is suggested.展开更多
The feedforward and feedback control strategy of water flowrate based on the analysis of thermal process in water cooling box was proposed, and the control strategy was applied to wire rod hot rolling at Baosteel Co. ...The feedforward and feedback control strategy of water flowrate based on the analysis of thermal process in water cooling box was proposed, and the control strategy was applied to wire rod hot rolling at Baosteel Co. The operation has proved that the strategy can control water flowrate in the cooling water box reasonably to ensure the temperature requirement of the wire discharged from the cooling water box.展开更多
基金Item Sponsored by National Natural Science Foundation of China (59937150 ,60274054),863 High Tech Development Plan ofChina (2001AA413910) and National Outstanding Young Investigator Grant (6970025)
文摘A systematic study on the electrical load forecasting for large-scale iron and steel companies was made. After analyzing the electrical load's characteristics, an algorithm framework for the load forecasting in iron and steel complex was formulated based on model combination and scheme filtration. The algorithm features data quality self- adaptation, convenient forecasting model extension, easy practical application, etc. , and has been successfully applied in Baoshan Iron and Steel Co Ltd, Shanghai, China, resulting in great economic benefit.
文摘The electrochemical nature of reaction between melt and slag in a closed system was worked out. Experimental results demonstrated that both the rate and reaction extent increase when the electronic conductor or voltage was applied between melt and slag. The bigger the contact area of the conductor with melts is, the faster the reaction rate is. With the increase of applied voltage which is beneficial for electron's migration between metal and slags, the rate and extent of reaction increase.
基金financially supported by the National Key Project of Scientific and Technical Supporting Programs of China (No. 2011BAE13B07)
文摘In a typical process, C-Mn steel was annealed at 800℃ for 180 s, and then cooled rapidly to obtain the ferrite-martensite microstructure. After pre-straining, the specimens were baked and the corresponding bake-hardening (BH) values were determined as a function of pre-strain, baking temperature, and baking time. The influences ofpre-strain, baking temperature and baking time on the microstructure evolution and bake-hardening behavior of the dual-phase steel were investigated systematically. It was found that the BH value apparently increased with an increase in pre-strain in the range from 0 to 1%; however, increasing pre-strain from 1% to 8% led to a decrease in the BH value. Furthermore, an increase in baking temperature favored a gradual improvement in the BH value because of the formation of Cottrell atmosphere and the precipitation of carbides in both the ferrite and martensite phases. The BH value reached a maximum of 110 MPa at a baking temperature of 300℃. Moreover, the BH value enhanced significantly with increasing baking time from 10 to 100 min.
基金supported by the National Twelfth Five-year Science and Technology Support Program of China (Grant Nos. 2011BAE13B01 and 2011BAE13B03)
文摘Three low-carbon dual-phase (DP) steels with almost constant martensite contents of 20vo1% were produced by intercritical annealing at different heating rates and soaking temperatures. Microstructures prepared at low temperature (1043 K, FH1) with fast-heating (300 K/s) show banded ferrite/martensite structure, whereas those soaked at high temperature (1103 K, FH2) with fast heating reveal blocky martensite uniformly distributed in the fine-grained ferrite matrix. Their mechanical properties were tested under tensile conditions and compared to a slow-heated (5 K/s) reference material (SH0). The tensile tests indicate that for a given martensite volume fraction, the yield strength and total elongation values are noticeably affected by the refinement of ferrite grains and the martensite morphology. Metallographic observations reveal the formation of microvoids at the ferrite/martensite interface in the SH0 and FH2 samples, whereas microvoids nucleate via the fracture of banded martensite particles in the FH1 specimen. In addition, analyses of the work-hardening behaviors of the DP microstructures using the differential Crussard-Jaoul technique demonstrate two stages of work hardening for all samples.
基金the Baoshan Iron and Steel Group for the financial support
文摘Isothermal transformation (TTT) behavior of the low carbon steels with two Si contents (0.50 wt pct and 1.35 wt pct) was investigated with and without the prior deformation. The results show that Si and the prior deformation of the austenite have significant effects on the transformation of the ferrite and bainite. The addition of Si refines the ferrite grains, accelerates the polygonal ferrite transformation and the formation of M/A constituents, leading to the improvement of the strength. The ferrite grains formed under the prior deformation of the austenite become more homogeneous and refined. However, the influence of deformation on the tensile strength of both steels is dependent on the isothermal temperatures. Thermodynamic calculation indicates that Si and prior deformation reduce the incubation time of both ferrite and bainite transformation, but the effect is weakened by the decrease of the isothermal temperatures.
基金Project(2008AA06Z1071) supported by the National High-tech Research and Development Program of China Project(50474043) supported by the National Natural Science Foundation of China
文摘An interfacial study between molten iron and the prereduced ilmenite with carbon was conducted at different melting temperatures by the sessile droplet method.The wetting characteristics between molten iron and the prereduced ilmenites with carbon were investigated by measuring contact angle of the droplet of molten iron on the prereduced ilmenite substrate.The images of the interface were also examined by the optical microscope and SEM equipped with EDS.The volume of molten iron increased with the melting temperature increasing when titania or high-content titania slag was used as the substrate.The contact angle decreased with the melting temperature increasing and it was independent on time at constant temperature.The contact angle was positively correlated with the reduction degree of the ilmenite,but the work of adhesion was negatively correlated with it.Higher smelting temperature was beneficial to the separation of iron and Ti oxides.The permeability of molten iron into the prereduced ilmenite with carbon was more obvious with reduction degree increasing owing to the high porosity of prereduced ilmenite.
文摘With the increasing requirements for reducing the weight and emission of automobiles, the automobile manufacturers turn to use the high strength steel. Car chassis as an important component has complex shape and is difficult to form. As the strength of design steel strength increases from about 400MPa to 590MPa, the steel hole expansion rate becomes a crucial indicator which needs to be over 75%.
文摘A double-parameter oxygen lance used in a 300 t converter was designed to improve the metallurgical performance. A small-scale measurement of the jet behavior was done using a computer controlled scanning system. The experimental data on the velocity distribution at the jet centerline, the contour map of the jet velocity, the deviation of the jet centerline, and the velocity distribution of the axial section were compiled. According to the results of the small-scale measurement, the double-parameter lance was also employed for a BOF experiment. The metallurgy inde- xes show that the metallurgical performance was highly promoted by use of the double-parameter lance.
基金Project(50605043) supported by the National Natural Science Foundation of China
文摘U-channel forming tests were performed to investigate the surface topography evolvement of hot-dip galvanized(GI) and galvannealed(GA) steels and the effects of die hardness on sheet metal forming(SMF). Experimental results indicate that the surface roughness values of the two galvanized steels increase with the number of forming,i.e.,the surface topographies of galvanized steels are roughened in SMF. Moreover,GI steel has a better ability of damage-resistance than GA steel. The mechanisms of topography evolvement are different in the forming of GI and GA steels. Scratch is the main form of surface damage in the forming of GI steels. The severity of scratch can be decreased by increasing die hardness. GA steel results in exfoliating of the coating firstly and then severe scratching. The surface topography of galvannealed steels can be improved by increasing die hardness. However,the hardness should not be too high.
文摘The time-temperature-transformation (TTT) curve of the 00Cr25Ni7Mo4N duplex stainless steel was obtained with a Formastor-digital thermal dilatometer, and the influence of isothermal aging on o precipitation was studied by metallographic observation, X-ray diffraction (XRD), and transmission electron microscopy (TEM). The results show that the decomposition of ferrite phase is accompanied by the formation of σ phase at 750-1000℃, especially in the range of 800-900℃. The longer the aging time, the higher the amount of o precipi- tation. The area fxaction of various phases remains at a certain value upon the completion of ferrite deformation. The temperature of 850℃ is the most sensitive transaction temperature, the incubation time for the formation of o precipitation is less than 1 min, and aging for 20 min leads to the complete transformation of ferrite. The o phase is formed preferentially at the α/α/γjunction, and then grows along the α/α boundary in the matrix.
基金the financial supports from the National Natural Science Foundation of China (Key Program,Grant No.50634030)the Program for New Century Excellent Talents in University (Grant No.NCET-06-0285)
文摘A coupled thermo-mechanical model containing metal flow and temperature field for calculating temperature variation has been developed on fourteen-pass hot continuous rolling of round rod for Inconel 718 alloy using 3D elastic-plastic finite element method (FEM). The temperature of characteristic analysis points in the intermediate cross-section of the workpiece has been simulated at initial temperature ranging from 960 to 1000 ℃ and initial velocity in range of 0.15-0.55 m·s^-1. Based on finite element analysis and microstructural observation in cylindrical hot compression experiments, the appropriate hot continuous rolling technologies have been designed for rod products with different diameters. For a real rolling practice, the simulated surface temperature was examined and is in good agreement with the measured one.
文摘To resolve the difficulty in slag formation during steelmaking with low silicon hot metal and to increase productivity, a new 5-hole lance was developed by increasing oxygen flow from 50 000 m^3/h to 60 000 m^3/h. Synthetic slag was added to adjust the slag composition. The problems such as difficulty in dephosphorization and slag adhesion to oxygen lance and hood were settled. Steel production and metal yield were increased and the nozzle life was prolonged through these techniques.
基金supported by the National Natural Science Foundation of China(51174247)
文摘In a typical process, low carbon steel was annealed at two different temperatures (660℃ and 750℃), and then was temper rolled to improve the mechanical properties. Pre-straining and baking treatments were subsequently carried out to measure the bake-hardening (BH) values. The influences of annealing temperature and temper rolling on the BH behavior of the steel were investigated. The results indicated that the microstructure evolution during temper rolling was related to carbon atoms and dislocations. After an apparent increase, the BH value of the steel significantly decreased when the temper rolling reduction was increased from 0%to 5%. This was attributed to the increase in solute carbon concentration and dislocation density. The maximum BH values of the steel annealed at 660℃ and 750℃ were 80 MPa and 89 MPa at the reductions of 3%and 4%, respectively. Moreover, increasing the annealing temperature from 660 to 750℃ resulted in an ob-vious increase in the BH value due to carbide dissolution.
文摘A roll shape setting model was built for the hot galvanizing and planishing mill. The uniform transversal distributions of the front tension in the exit and the unit pressure were considered as the objective function. At the same time, the quality of the products, the stability of zinc layer, and the homogeneity of spangles were of considerable significance in the planishing process. The model was applied to the roll shape setting of the 1800 cold rolling 3# CGL hot galvanizing and planishing mill of Baosteel Co Ltd. After being planished, the flatness of a strip that was less than 6 I was more than 97%, and the flatness of others were less than 10 I; the pass percentage of the zinc lay- ers reached 100%.
基金ItemSponsored by National Natural Science Foundation of China (50274028) State Key Fundamental Research Project(G19990650)
文摘The fatigue behavior of high speed steel (HSS) roll materials for hot rolling was researched under watercooling conditions by laser impacting. The microstructure of HSS sample and the morphologies of fatigue samples were observed by scanning electron microscope. The phase structure was detected by XRD. The morphology of situ oxide scale was observed by optical microscope, and the expansion coefficient was measured by TGA. The experiment results indicate that the cracks come into being at the carbide-matrix interface, but there are no cracks in the matrix after many times of laser impacting treatment, for the situ sample taken from the fractured roll surface, big carbides are more sensitive to the fatigue, and peel off prior to small ones. The relevant fatigue mechanisms are also discussed.
基金Project(50471104) supported by the National Natural Science Foundation of China
文摘Field emission-scanning electron microscopy(FE-SEM) technique was employed to observe the shape, size and distribution of AlN+MnS inclusions in oriented electrical steels. Specimens used for FE-SEM observation were deeply electrolytic etched at room temperature in non-aqueous acetylacetone(AA) solution. The results indicate that the FE-SEM technique has obvious advantage in specimen preparation. Therefore, it can be easily used to identify the AlN+MnS inclusions and even copper nano-particles in oriented electrical steels with the same analysis accuracy as that by TEM. This technique is a good substitute for TEM and the associated specimen preparation in the observation of inclusions in electrical steels. It will be a powerful technique for routine analysis in the production of grain oriented electrical steels.
文摘To explore the application of severe plastic deformation for grain refinement in steel production, a new method called continuous frictional angular extrusion (CFAE) was applied to refine the grain of interstitial-free steel. The deformation was carried out at room temperature and individual sheet specimens were processed in different number of passes. An overall grain size of 200nm was achieved after 8 passes and the proportion of high-angle boundaries to the total boundaries was more than 60%. Through the characterization of high resolution EBSD, X-ray diffraction (XRD) and hardness testing,this paper discussed the evolution of microstructures and textures during deformation and explored the development direction of the method.
文摘Tempered tool steel 5Cr15MoV was normalized at different temperatures followed by air-cooling. It is found that the hardness increases with the increment of a normalizing temperature from 950℃ to 1 150℃, and it then decreases with the temperature getting higher. The Thermo-calc calculation reveales that the mole fraction of carbides decreases when the normalizing temperature increases,which indicates that more carbon dissolved in the matrix enhances the hardness of the steel. However,the existence of retained austenite causes hardness reduction when the normalizing temperature is over 1 150℃. The salt spray test shows that the steel possesses poor corrosion resistance when it is normalized at a temperature above 1 100℃. The precipitation of the carbides in the cooling process creates a number of chromium-depleted zones, making the steel vulnerable to corrosives. In the present work, an appropriate normalizing temperature is suggested.
文摘The feedforward and feedback control strategy of water flowrate based on the analysis of thermal process in water cooling box was proposed, and the control strategy was applied to wire rod hot rolling at Baosteel Co. The operation has proved that the strategy can control water flowrate in the cooling water box reasonably to ensure the temperature requirement of the wire discharged from the cooling water box.