期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Transformation of Supercapacitive Charge Storage Behaviour in a Multi elemental Spinel CuMn_(2)O_(4) Nanofibers with Alkaline and Neutral Electrolytes 被引量:1
1
作者 Ria Kunwar Syam G.Krishnan +4 位作者 Izan Izwan Misnon Fatemeh Zabihi Shengyuan Yang Chun-Chen Yang Rajan Jose 《Advanced Fiber Materials》 CAS 2021年第4期265-274,共10页
Electrode material has been cited as one of the most important determining factors in classifying an energy storage system’s charge storage mechanism,i.e.,as battery-type or supercapacitive-type.In this paper,we show... Electrode material has been cited as one of the most important determining factors in classifying an energy storage system’s charge storage mechanism,i.e.,as battery-type or supercapacitive-type.In this paper,we show that along with the electrode material,the electrolyte also plays a role in determining the charge storage behaviour of the system.For the purpose of our research,we chose multi-elemental spinal type CuMn_(2)O_(4) metal oxide nanofibers to prove the hypothesis.The material is synthesized as nanofibers of diameter~120 to 150 nm in large scales by a pilot scale electrospinning set up.It was then tested in three different electrolytes(1 M KOH,1 M Na_(2)SO_(4) and 1 M Li_(2)SO_(4)),two of which are neutral and the third is alkaline(KOH).The cyclic voltammograms and the galvanostatic charge-discharge of the electrode material in a three-electrode sys-tem measurement showed that it exhibit different charge storage mechanism in different electrolyte solutions.For the neutral electrolytes,a capacitive behaviour was observed whereas a battery-type behaviour was seen for the alkaline electrolyte.This leads us to conclude that the charge storage mechanism,along with the active material,also depends on the electrolyte used. 展开更多
关键词 Energy storage materials Electrochemical double layer capacitors Capacitive charge storage Ternary manganates Pseudocapacitors
原文传递
Self-rechargeable energizers for sustainability
2
作者 JinKiong Ling Ria Kunwar +5 位作者 Linlin Li Shengjie Peng Izan Izwan Misnon Mohd Hasbi Ab Rahim Chun-Chen Yang Rajan Jose 《eScience》 2022年第4期347-364,共18页
Electrical energy generation and storage have always been complementary to each other but are often disconnected in practical electrical appliances.Recently,efforts to combine both energy generation and storage into s... Electrical energy generation and storage have always been complementary to each other but are often disconnected in practical electrical appliances.Recently,efforts to combine both energy generation and storage into self-powered energizers have demonstrated promising power sources for wearable and implantable electronics.In line with these efforts,achieving self-rechargeability in energy storage from ambient energy is envisioned as a tertiary energy storage(3rd-ES)phenomenon.This review examines a few of the possible 3rd-ES capable of harvesting ambient energy(photo-,thermo-,piezo-,tribo-,and bio-electrochemical energizers),focusing also on the devices'sustainability.The self-rechargeability mechanisms of these devices,which function through modifications of the energizers’constituents,are analyzed,and designs for wearable electronics are also reviewed.The challenges for self-rechargeable energizers and avenues for further electrochemical performance enhancement are discussed.This article serves as a one-stop source of information on self-rechargeable energizers,which are anticipated to drive the revolution in 3rd-ES technologies. 展开更多
关键词 Batteries SUPERCAPACITORS SELF-POWERED Textile electronics YARNS
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部