Background:Ongoing climate change is anticipated to increase the frequency and intensity of drought events,thereby affecting forest recovery dynamics and elevating tree mortality.The drought of 2018,with its exception...Background:Ongoing climate change is anticipated to increase the frequency and intensity of drought events,thereby affecting forest recovery dynamics and elevating tree mortality.The drought of 2018,with its exceptional intensity and duration,had a significant adverse impact on tree species throughout Central Europe.However,our understanding of the resistance to and recovery of young trees from drought stress remains limited.Here,we examined the recovery patterns of native deciduous tree sapling species following the 2018 drought,and explored the impact of soil depth,understory vegetation,and litter cover on this recovery.Methods:A total of 1,149 saplings of seven deciduous tree species were monitored in the understory of old-growth forests in Northern Bavaria,Central Germany.The vitality of the saplings was recorded from 2018 to 2021 on 170 plots.Results:Fagus sylvatica was the most drought-resistant species,followed by Betula pendula,Acer pseudoplatanus,Quercus spp.,Corylus avellana,Carpinus betulus,and Sorbus aucuparia.Although the drought conditions persisted one year later,all species recovered significantly from the 2018 drought,albeit with a slight decrease in vitality by 2021.In 2018,the drought exhibited a more pronounced adverse effect on saplings in deciduous forests compared to mixed and coniferous forests.Conversely,sapling recovery in coniferous and mixed forests exceeded that observed in deciduous forests in 2019.The pivotal factors influencing sapling resilience to drought were forest types,soil depth,and understory vegetation,whereas litter and forest canopy cover had a negative impact.Conclusion:Long-term responses of tree species to drought can be best discerned through continuous health monitoring.These findings demonstrate the natural regeneration potential of deciduous species in the context of climate change.Selective tree species planting,soil management practices,and promoting understory diversity should be considered when implementing adaptive management strategies to enhance forest resilience to drought events.展开更多
Background:The recent rise in temperature and shifting precipitation regimes threaten ecosystems around the globe to different degrees.Treelines are expected to respond to climate warming by shifting to higher elevati...Background:The recent rise in temperature and shifting precipitation regimes threaten ecosystems around the globe to different degrees.Treelines are expected to respond to climate warming by shifting to higher elevations,but it is unclear whether they can track temperature changes.Here,we integrated high-resolution aerial imagery with local climatic and topographic characteristics to study the treeline dynamic from 1945 to 2015 on the semiarid Mediterranean island of Crete,Greece.Results:During the study period,the mean annual temperature at the treeline increased by 0.81℃,while the average precipitation decreased by 170 mm.The treeline is characterized by a diffuse form,with trees growing on steep limestone slopes(>50°)and shallow soils.Moreover,the treeline elevation decreases with increasing distance from the coast and with aspect(south>north).Yet,we found no shift in the treeline over the past 70 years,despite an increase in temperature in all four study sites.However,the treeline elevation correlated strongly with topographic exposure to wind(R^(2)=0.74,p<0.001).Therefore,the temporal lag in treeline response to warming could be explained by a combination of topographic and microclimatic factors,such as the absence of a shelter effect and a decrease in moisture.Conclusion:Although there was no treeline shift over the last 70 years,climate change has already started shifting the treeline altitudinal optimum.Consequently,the lack of climate-mediated migration at the treeline should raise concerns about the threats posed by warming,such as drought damages,and wildfire,especially in the Mediterranean region.Therefore,conservation management should discuss options and needs to support adaptive management.展开更多
文摘Background:Ongoing climate change is anticipated to increase the frequency and intensity of drought events,thereby affecting forest recovery dynamics and elevating tree mortality.The drought of 2018,with its exceptional intensity and duration,had a significant adverse impact on tree species throughout Central Europe.However,our understanding of the resistance to and recovery of young trees from drought stress remains limited.Here,we examined the recovery patterns of native deciduous tree sapling species following the 2018 drought,and explored the impact of soil depth,understory vegetation,and litter cover on this recovery.Methods:A total of 1,149 saplings of seven deciduous tree species were monitored in the understory of old-growth forests in Northern Bavaria,Central Germany.The vitality of the saplings was recorded from 2018 to 2021 on 170 plots.Results:Fagus sylvatica was the most drought-resistant species,followed by Betula pendula,Acer pseudoplatanus,Quercus spp.,Corylus avellana,Carpinus betulus,and Sorbus aucuparia.Although the drought conditions persisted one year later,all species recovered significantly from the 2018 drought,albeit with a slight decrease in vitality by 2021.In 2018,the drought exhibited a more pronounced adverse effect on saplings in deciduous forests compared to mixed and coniferous forests.Conversely,sapling recovery in coniferous and mixed forests exceeded that observed in deciduous forests in 2019.The pivotal factors influencing sapling resilience to drought were forest types,soil depth,and understory vegetation,whereas litter and forest canopy cover had a negative impact.Conclusion:Long-term responses of tree species to drought can be best discerned through continuous health monitoring.These findings demonstrate the natural regeneration potential of deciduous species in the context of climate change.Selective tree species planting,soil management practices,and promoting understory diversity should be considered when implementing adaptive management strategies to enhance forest resilience to drought events.
基金We acknowledge support from the ECOPOTENTIAL project-EU Horizon 2020 research and innovation program,grant agreement no.641762.
文摘Background:The recent rise in temperature and shifting precipitation regimes threaten ecosystems around the globe to different degrees.Treelines are expected to respond to climate warming by shifting to higher elevations,but it is unclear whether they can track temperature changes.Here,we integrated high-resolution aerial imagery with local climatic and topographic characteristics to study the treeline dynamic from 1945 to 2015 on the semiarid Mediterranean island of Crete,Greece.Results:During the study period,the mean annual temperature at the treeline increased by 0.81℃,while the average precipitation decreased by 170 mm.The treeline is characterized by a diffuse form,with trees growing on steep limestone slopes(>50°)and shallow soils.Moreover,the treeline elevation decreases with increasing distance from the coast and with aspect(south>north).Yet,we found no shift in the treeline over the past 70 years,despite an increase in temperature in all four study sites.However,the treeline elevation correlated strongly with topographic exposure to wind(R^(2)=0.74,p<0.001).Therefore,the temporal lag in treeline response to warming could be explained by a combination of topographic and microclimatic factors,such as the absence of a shelter effect and a decrease in moisture.Conclusion:Although there was no treeline shift over the last 70 years,climate change has already started shifting the treeline altitudinal optimum.Consequently,the lack of climate-mediated migration at the treeline should raise concerns about the threats posed by warming,such as drought damages,and wildfire,especially in the Mediterranean region.Therefore,conservation management should discuss options and needs to support adaptive management.