期刊文献+
共找到66篇文章
< 1 2 4 >
每页显示 20 50 100
Effects of distance between arc and heat sink on stress and distortion in DC-LSND welding technology 被引量:1
1
作者 李菊 关桥 +3 位作者 郭德伦 杜欲晓 孙永春 史耀武 《China Welding》 EI CAS 2007年第3期6-9,共4页
The characteristics of temperatures, stresses and strains fields have been studied numerically for a titanium alloy sheet welded with an improved gas tungsten arc welding method, in which a trailing spot heat sink is ... The characteristics of temperatures, stresses and strains fields have been studied numerically for a titanium alloy sheet welded with an improved gas tungsten arc welding method, in which a trailing spot heat sink is introduced to control the welding stress and distortion. The impinging jet model is employed to describe the internee heat transfer between the cooling media and the top suufuce of the workpiece. The influcnee of the distance between arc and heat sink is investigated. Results show that there is an ideal range of distance. Using the ideal distance, a low stress and no distortion welding structure can be derived. 展开更多
关键词 gas tungsten arc welding dynamically controlled low stress no distortion STRESS DISTORTION finite element method titanium alloy
下载PDF
Thermal Tensioning Effects to Prevent Welding Buckling Distortions in Manufacturing of Thin-Walled Aerospace Shells and Panels 被引量:1
2
作者 Guan Qiao 《工程科学(英文版)》 2006年第3期1-10,共10页
To prevent buckling distortions of thin-walled elements, Low Stress No Distortion welding techniques have been pioneered and developed for product engineering and component manufacturing of aerospace structures with m... To prevent buckling distortions of thin-walled elements, Low Stress No Distortion welding techniques have been pioneered and developed for product engineering and component manufacturing of aerospace structures with material thickness less than 4 mm. In this paper, the nature of Low Stress No Distortion (LSND) welding techniques using thermal tensioning effects is described and special emphases are given to the mechanism of localized thermal tensioning effect. The fundamental principle of Low Stress No Distortion welding is to create active in-process control of incompatible (inherent) plastic strains and stresses formation during welding to achieve distortion-free results implying that no post weld costly reworking operations for distortion correction is required. Finite element analysis is applied to predict and optimize the localized thermal tensioning technique with a trailing spot heat sink coupled to the welding heat source. Comparisons of the thermal elastic-plastic stress-strain cycles are given between conventional gas tungsten arc welding and GTAW with a trailing spot heat sink. 展开更多
关键词 焊接残余应力 热源 冷源 弯曲变形 加热张拉 薄壁航空材料
下载PDF
Grain selection and growth orientation of prior-β phase for Ti-6-4 during additive manufacturing:insights from a modeling perspective
3
作者 Wei-zhao Sun Fei-hu Shan +2 位作者 Nan-fu Zong Hong-biao Dong Tao Jing 《China Foundry》 SCIE CAS 2021年第2期83-93,共11页
The microstructure of Ti-6-4 components produced by additive manufacturing suffers from the coarse and elongated prior-β grain,which leads to a decrease of the tensile behavior and the occurrence of anisotropy.To und... The microstructure of Ti-6-4 components produced by additive manufacturing suffers from the coarse and elongated prior-β grain,which leads to a decrease of the tensile behavior and the occurrence of anisotropy.To understand and control the grain evolution,a multiscale simulation is applied to investigate the relationship between the grain selection,growth orientation,and the molten pool morphology with the different deposition layer numbers and processing parameters.The accuracy of the simulation is validated by experiments in both qualitative and quantitative ways.Results show that when the grain with unfavorable orientation loses the competitive growth with its neighbors,there will be a great chance that the blocked grain is eliminated in the following layer-and-layer deposition,which leads to the increase of the grain width.The size of the molten pool increases remarkably as the layer number increases,which lays a heavy burden on the stability of the molten pool.The analytical relationship between the molten pool morphology and the grain growth orientation is also deduced.The flat molten pool causes the grains with the <001> direction close to the building direction to have greater survival potential.Besides,decreasing the line power energy shows little effect on the stability of the molten pool and the grain growth orientation,especially when the deposited layer number is large.The revealing mechanisms will help in understanding and further controlling the grain evolution. 展开更多
关键词 additive manufacturing Ti-6-4 simulation grain selection grain growth
下载PDF
Experimental Study on Surface Integrity of Ti-6Al-4V in High Speed Side Milling 被引量:6
4
作者 杨晓勇 任成祖 +1 位作者 王焱 陈光 《Transactions of Tianjin University》 EI CAS 2012年第3期206-212,共7页
Aiming at the surface integrity of titanium alloy Ti-6Al-4V in high speed side milling, a series of side mill- ing tests were carried out with uncoated carbide milling cutter at various milling speeds. Surface roughne... Aiming at the surface integrity of titanium alloy Ti-6Al-4V in high speed side milling, a series of side mill- ing tests were carried out with uncoated carbide milling cutter at various milling speeds. Surface roughness, residual stress, subsurface microstructure and microhardness variations were investigated. The surface roughness measurement results present that the milling speed from 80 to 120 m/min fails to produce better and more stable roughness values compared with the result obtained from 320 to 380 m/min. The residual stresses in the feed direction and axial depth of cut direction are in similar trends for the two milling speed levels mentioned above. Moreover, the residual stress pro- duced at 320 to 380 m/min is lower and more stable than that at 80 to 120 m/min. The microstructure analysis shows that the volume of β phase in the near surface becomes smaller and the deformation of β phase in the near surface be- comes obvious with the increase of the milling speed. Subsurface microhardness variation was observed down to 200 μm below the machined surface at 80 to 120 m/min and down to 160 μm at 320 to 380 m/min. It is concluded that better surface integrity and higher material removal rate can be obtained at 320 to 380 m/min than at 80 to 120 m/min. 展开更多
关键词 surface roughness residual stress MICROHARDNESS microstructure
下载PDF
Effect of natural aging on microstructure and mechanical properties of friction stir welded 7050-T7451 joints 被引量:6
5
作者 Zhang Kun Luan Guohong Fu Ruidong 《China Welding》 EI CAS 2016年第3期16-22,共7页
The microstructure and mechanical properties of friction stir welded 2. 5 mm 7050-T7451 aluminum alloy natural aging 72 h and 17 520 h were investigated, respectively. The uniaxial tensile test showed that yield stren... The microstructure and mechanical properties of friction stir welded 2. 5 mm 7050-T7451 aluminum alloy natural aging 72 h and 17 520 h were investigated, respectively. The uniaxial tensile test showed that yield strength, tensile strength and elongation of the joints 17 520 h natural aging were about 20%, 12% and 24% higher than those joints natural aging 72 h. Hardness profile of natural aging 17 520 h joint witnessed significant enhancement in nugget zone, compared with 72 h natural aging. Differential scanning calorimetry ( DSC ) and transmission electron microscopy (TEM) test revealed that more Guinier-Preston zone, η' and 71 phase emerged in nugget zone as natural aging duration increased, high density of dislocation located within grain boundary in nugget zone of joints natural aging 72 h. It is concluded that natural aging was feasible to enhalwe strength and plasticity of FSW joints simultaneously. 展开更多
关键词 friction stir welding AA7050 natural aging mechanical property PRECIPITATION
下载PDF
Macro-microscopic morphology and phase analysis of TiAl-based alloys sheet fabricated by EB-PVD method 被引量:6
6
作者 章德铭 陈贵清 +2 位作者 韩杰才 张幸红 姚振中 《中国有色金属学会会刊:英文版》 EI CSCD 2007年第4期777-782,共6页
TiAl-based alloys sheet with thickness of 0.3-0.4 mm as well as dimension of 150 mm×100 mm was fabricated successfully by using electron beam-physical vapor deposition(EB-PVD) method. The microscopic morphology a... TiAl-based alloys sheet with thickness of 0.3-0.4 mm as well as dimension of 150 mm×100 mm was fabricated successfully by using electron beam-physical vapor deposition(EB-PVD) method. The microscopic morphology and phase composition of specimens in various states were analyzed by atomic force microscope(AFM), scanning electron microscope(SEM) and X-ray diffractometer(XRD), respectively. The results indicate that the as-deposited TiAl-based alloys sheet has good surface quality and is composed of γ, α2 and τ phase. There is natural delamination inside the sheet, of which the microstructure is columnar crystal, and the component shows a gradient change along the normal direction of substrate. After the vacuum hot pressing treatment and subsequent homogenization treatment, the columnar crystal transforms into the coarse fully lamellar microstructure, the delamination phenomenon and τ phase disappear, α2 phase decreases obviously, and the composition tends to uniformization. 展开更多
关键词 钛铝合金 电子束-物理气相沉积 微观结构 相分析
下载PDF
Effect of heating time on bonding interface, atom diffusion and mechanical properties of dissimilar titanium joints produced by thermal self-compressing bonding 被引量:7
7
作者 Yun-hua DENG Qiao GUAN Jun TAO 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2018年第4期662-668,共7页
Solid-state bonding between pure titanium and Ti6Al4V(TC4)alloy was conducted by a new bonding method named as rigid restraint thermal self-compressing bonding.Effects of heating time on bonding interface,atom diffusi... Solid-state bonding between pure titanium and Ti6Al4V(TC4)alloy was conducted by a new bonding method named as rigid restraint thermal self-compressing bonding.Effects of heating time on bonding interface,atom diffusion and mechanical properties of the joints were studied.Results show that atom diffusion between pure titanium and TC4 alloy significantly takes place during bonding.The diffusion depths of Al and V in pure titanium side are increased with increasing heating time.Due to the enhancement of atom diffusion,bond quality of the bonding interface is improved along with the increase of heating time.The heating time seems to have little effect on microhardness distribution across the joint.However,the tensile strength and ductility of the joint have close relation to heating time.Prolonging heating time can improve the tensile strength and ductility of the joint,especially the latter.When the heating time increases to 450 s,solid-state joint with good combination of strength and ductility is attained. 展开更多
关键词 dissimilar titanium alloys joining rigid restraint thermal self-compressing bonding atom diffusion mechanical properties
下载PDF
Effect of microvoids on microplasticity behavior of dual-phase titanium alloy under high cyclic loading(Ⅰ):Crystal plasticity analysis 被引量:4
8
作者 Kai-di LI Xiao-ning HAN +2 位作者 Bin TANG Meng-qi ZHANG Jin-shan LI 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2022年第2期513-523,共11页
A crystal plasticity finite element(CPFE)model was established and 2D simulations were carried out to study the relationship between microvoids and the microplasticity deformation behavior of the dual-phase titanium a... A crystal plasticity finite element(CPFE)model was established and 2D simulations were carried out to study the relationship between microvoids and the microplasticity deformation behavior of the dual-phase titanium alloy under high cyclic loading.Results show that geometrically necessary dislocations(GND)tend to accumulate around the microvoids,leading to an increment of average GND density.The influence of curvature in the tip plastic zone(TPZ)on GND density is greater than that of the size of the microvoid.As the curvature in TPZ and the size of the microvoid increase,the cumulative shear strain(CSS)in the primaryα,secondaryα,andβphases increases.Shear deformation in the prismatic slip system is dominant in the primaryαphase.As the distance between the microvoids increases,the interactive influence of the microvoids on the cumulative shear strain decreases. 展开更多
关键词 crystal plasticity dual-phase Ti alloy MICROVOIDS high cyclic loading cumulative shear strain geometrically necessary dislocation
下载PDF
Numerical Study on the Stress–Strain Cycle of Thermal Self-Compressing Bonding 被引量:3
9
作者 Yun-Hua Deng Qiao Guan +1 位作者 Jun Tao Bing Wu 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2018年第4期140-147,共8页
Thermal self-compressing bonding(TSCB) is a new solid-state bonding method pioneered by the authors. With electron beam as the non-melted heat source, previous experimental study performed on titanium alloys has prove... Thermal self-compressing bonding(TSCB) is a new solid-state bonding method pioneered by the authors. With electron beam as the non-melted heat source, previous experimental study performed on titanium alloys has proved the feasibility of TSCB. However, the thermal stress–strain process during bonding, which is of very important significance in revealing the mechanism of TSCB, was not analysed. In this paper, finite element analysis method is adopted to numerically study the thermal elasto-plastic stress–strain cycle of thermal self-compressing bonding. It is found that due to the localized heating, a non-uniform temperature distribution is formed during bonding, with the highest temperature existed on the bond interface. The expansion of high temperature materials adjacent to the bond interface are restrained by surrounding cool materials and rigid restraints, and thus an internal elasto-plastic stress–strain field is developed by itself which makes the bond interface subjected to thermal compressive action. This thermal self-compressing action combined with the high temperature on the bond interface promotes the atom diffusion across the bond interface to produce solid-state joints. Due to the relatively large plastic deformation, rigid restraint TSCB obtains sound joints in relatively short time compared to diffusion bonding. 展开更多
关键词 Thermal self-compressing bonding Locally non-melted heating Thermal elasto-plastic stress–strain Atom diffusion Solid-state bonding Finite element analysis
下载PDF
Effect of laser characteristics on the weld shape and properties of penetration laser weld of BT20 titanium alloy 被引量:4
10
作者 陈俐 巩水利 +1 位作者 姚伟 胡伦骥 《China Welding》 EI CAS 2004年第1期1-6,共6页
The laser beam welding of BT20 titanium alloy was conducted to investigate the weld shape, microstructures and properties. The full penetration weld characteristics produced by CO_2 laser and by YAG laser were compare... The laser beam welding of BT20 titanium alloy was conducted to investigate the weld shape, microstructures and properties. The full penetration weld characteristics produced by CO_2 laser and by YAG laser were compared. The results show that the full penetration weld of YAG laser welding closes to “X” shape, and weld of CO_2 laser welding is “nail-head” shape. Those result from special heating mode of laser deep penetration welding. The tension strength of CO_2 laser and YAG laser joints equal to that of the base metal, but the former has better ductility. All welds consist mainly of the acicular α phase and a few β phase in microstructure. The dendritic crystal of CO_2 laser weld is a little finer than YAG laser weld. According the research CO_2 laser is better than YAG laser for welding of BT20 titanium alloy. 展开更多
关键词 titanium alloy laser welding CO_2 laser YAG laser weld shape MICROSTRUCTURES mechanical properties
下载PDF
Interfacial structure and mechanical property of Al2O3 and Invar brazed joint 被引量:5
11
作者 Zhao Lei Hou Jinbao Li Xiaohong 《China Welding》 EI CAS 2016年第4期68-73,共6页
This paper introduces a brazing process between Al2O3 ceramic and Invar alloy.Al2O3 can be brazed with Invar effectively.The interfacial structure of Al2O3/Invar joint can be expressed as:Invar/Ag(s,s)+Cu(s,s)+... This paper introduces a brazing process between Al2O3 ceramic and Invar alloy.Al2O3 can be brazed with Invar effectively.The interfacial structure of Al2O3/Invar joint can be expressed as:Invar/Ag(s,s)+Cu(s,s)+Fe2Ti(zone Ⅰ)/Ag(s,s)+Cu(s,s)+Fe2Ti+NiTi+Cu3Ti(zone Ⅱ)/Ag(s,s)+Cu(s,s)+Cu2Ti+Al(s,s)+TiC+TiO(zone Ⅲ)/Al2O3.The maximum shear strength of 139 MPa was measured for as-brazed Al2O3/Invar joint brazed at 850℃ for 25 min or 900℃ for 15 min. 展开更多
关键词 engineering ceramics ferrous metals and alloys BRAZING
下载PDF
Microstructure - properties relationship of transient liquid phase diffusion bonded a third generation single crystal super alloy joint 被引量:3
12
作者 Lang Bo Chai Lu +1 位作者 Hou Jinbao Guo Delun 《China Welding》 EI CAS 2017年第1期54-59,共6页
Microstructure of transient liquid phase( TLP) diffusion bonded a third generation single crystal superalloy joint was investigated using scanning electron microscopy( SEM),and mechanical properties test of joint was ... Microstructure of transient liquid phase( TLP) diffusion bonded a third generation single crystal superalloy joint was investigated using scanning electron microscopy( SEM),and mechanical properties test of joint was carried out,for obtaining relationship between microstructure and mechanical properties of joint. The results showed that the joint contained bonding zone and base metal. The diffusion zone was obviously observed. When it was not finished for isothermal solidification process,the bonding zone would contain isothermal solidification zone and rapid solidification zone. Metallographic examination revealed that isothermal solidification zone was consisted of γ and γ' phase. Rapid solidification zone was consisted of two different structures,which were ternary eutectic of borides,γ and γ' phase developing at the edge of joint,binary eutectic of γ and γ' phase appearing in the portion of joint. When it was not enough for homogenization process under the condition of finishing isothermal solidification process,the bonding zone would contain isothermal solidification zone and borides at the interface. Under the conditions of relatively high welding temperature and long welding time,average tensile strength of joint was equivalent to that of parent material. 展开更多
关键词 single crystal SUPERALLOY TRANSIENT liquid phase diffusion BONDING MICROSTRUCTURE
下载PDF
Microstructural characteristics and mechanical properties of bobbin-tool friction stir welded 2024–T3 aluminum alloy 被引量:6
13
作者 Ji-hong Dong Chong Gao +3 位作者 Yao Lu Jian Han Xiang-dong Jiao Zhi-xiong Zhu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2017年第2期171-178,共8页
Cold-rolled 2024-T3 sheet alloy was subjected to bobbin-tool friction stir welding (BTFSW). The microstructural characteristics and mechanical properties of the nugget zone in the as-welded state were investigated. ... Cold-rolled 2024-T3 sheet alloy was subjected to bobbin-tool friction stir welding (BTFSW). The microstructural characteristics and mechanical properties of the nugget zone in the as-welded state were investigated. The results show that the equiaxed grain size of BTFSW 2024-T3 alloy decreases from 7.6 to 2.8 μm as the welding speed is increased from 80 to 120 mm/min; in addition, fine grains are generated in the nugget zone and the size distribution is non-uniform. All A12CuMg (S') precipitates dissolve into the A1 matrix, whereas Mn-rich phases confirmed as T phases (Al20CuEMn3, A16Mn, or AlaMn) remain unchanged. The optimized parameters for BTFSW are veri- fied as the rotation speed of 350 r/min and the travel speed of 100 mm/min. The variations in precipitation and dislocation play more impor- tant roles than grain size in the nugget zone with respect to influencing the mechanical properties during the BTFSW process. After the BTFSW process, the fracture mode of base material 2024-T3 alloy transforms from ductile rupture to ductile-brittle mixed fi'acture. 展开更多
关键词 aluminum alloys friction stir welding mechanical properties microstructure
下载PDF
Effects of pin geometry on the material flow behavior of friction stir spot welded 2A12 aluminum alloy 被引量:3
14
作者 李政玮 岳玉梅 +2 位作者 马琳 姬书得 柴鹏 《China Welding》 EI CAS 2015年第2期25-29,共5页
A three-dimensional finite volume model was established by the ANSYS FLUENT software to simulate the material flow behavior during the friction stir spot welding (FSSW) process. Effects of the full-threaded pin and ... A three-dimensional finite volume model was established by the ANSYS FLUENT software to simulate the material flow behavior during the friction stir spot welding (FSSW) process. Effects of the full-threaded pin and the reverse-threaded pin on the material flow behavior were mainly discussed. Results showed that the biggest material flow velocity appeared at the outer edge of the tool shoulder. The velocity value became smaller with the increase of the distance away from the tool surface. In general, material flows downwards along the pin thread when the full-threaded pin is used. Meanwhile, both the materials of the upper and the lower plates flow towards the lap interface along the pin thread when the reverse-threaded pin is used. The numerical simulation results were investigated by experiment, in which 2A12 aluminum alloy was used as the research object. The effective sheet thickness (EST) and stir zone (SZ) width of the joint by the reverse-threaded pin were much bigger than those by the full-threaded pin. Accordingly, cross tension failure load of the joint by the reverse-threaded pin is 23% bigger than the joint by the full-threaded pin. 展开更多
关键词 friction stir spot welding pin geometry material flow behavior numerical simulation
下载PDF
Research on laser weld penetration monitoring with laser induced plasma signals 被引量:3
15
作者 段爱琴 胡伦骥 王亚军 《China Welding》 EI CAS 2004年第2期119-122,共4页
In this paper, laser induced plasma signals were analyzed during keyhole welding through three methods. According to the results, the relativity between optical and acoustic signals of plasma is shown when welds are i... In this paper, laser induced plasma signals were analyzed during keyhole welding through three methods. According to the results, the relativity between optical and acoustic signals of plasma is shown when welds are in full-penetration, or partial-penetration and non-penetration. 展开更多
关键词 laser welding PLASMA optical signal acoustic signal
下载PDF
Nanocomposite TiC/a-C:H film prepared on titanium aluminium alloy substrates by PSII assistant MW-ECRCVD 被引量:2
16
作者 马国佳 刘喜亮 +2 位作者 张华芳 武洪臣 彭丽平 《Chinese Physics B》 SCIE EI CAS CSCD 2007年第4期1105-1110,共6页
Thin films of titanium carbide and amorphous hydrogenated carbon have been synthesized on titanium aluminium alloy substrates by PSII assisted MW-ECRCVD with a mirror field. The microstructure, chemical composition an... Thin films of titanium carbide and amorphous hydrogenated carbon have been synthesized on titanium aluminium alloy substrates by PSII assisted MW-ECRCVD with a mirror field. The microstructure, chemical composition and mechanical property were investigated. Using XPS and TEM, the films were identified to be a-C:H film containing TiC nanometre grains (namely, the so-called nanocomposite structure). The size of TiC grains of nanocomposite TiC/DLC film is about 5 nm. The nanocomposite structure has obvious improvement in the mechanical properties of DLC film. The hardness of a-C:H film with Ti is enhanced to 34 G Pa~ while that of a-C:H film without Ti is about 12 G Pa, and the coherent strength is also obviously enhanced at the critical load of about 35N. 展开更多
关键词 NANOCOMPOSITE TiC/a-C:H diamond like carbon film PSII
下载PDF
Surface nanocrystallization of commercial pure titanium by shot peening 被引量:3
17
作者 MA Guang LUO Yu +4 位作者 CHEN Chun-huan REN Rui-ming WU Wei LI Zhi-qiang ZENG Yan-song 《中国有色金属学会会刊:英文版》 CSCD 2004年第z1期204-209,共6页
The surface nanostructures of commercial pure titanium was realized by the modified shot peening equipment commonly used in industry through the special treatment process. The results show that high-energy-shot-peenin... The surface nanostructures of commercial pure titanium was realized by the modified shot peening equipment commonly used in industry through the special treatment process. The results show that high-energy-shot-peening(HESP) commonly used to prepare nanostructured surface layers can be achieved by the increase of pill size, pill speed, and treatment time in the commercial shot peening equipment. XRD, SEM and TEM were used to characterize the surface layer microstructure of treated specimens. The analytic results show that the main deformation mode of commercial pure Ti is twinning. At the beginning of deformation, the dislocations are formed and twins occur within or on plane, then twins in intersection plane appear, and at last the twin characteristics disappear in the surface layer after longer treatment time. The deformation layer depth increases with treatment time in a certain period when the pill size and speed are unchanged. And in the severe plastic deformation (SPD) layer in which the twins are not identified easily by using SEM, the nanocrystalline microstructures are found under TEM. The finest grain size in the surface layer is about 40 nm, and the depth of nanostructured layers is over 60 μm. The microhardness of the nanostructured surface layers is enhanced significantly after shot peening compared with that of the initial simple. 展开更多
关键词 surface nanocrystallization commercial pure titanium PEENING HARDNESS
下载PDF
Model Investigation on Composite Failure Prediction of π-Joint Structures 被引量:2
18
作者 Zhao Libin Qin Tianliang +3 位作者 Huanghai Liang Xianzhu Chang Haifeng Cao Zhenghua 《稀有金属材料与工程》 SCIE EI CAS CSCD 北大核心 2009年第A03期105-108,共4页
This paper was concerned with the tensile mechanics behavior of the composite π-joint under static tensile loading. The numerical strength analysis methodology was presented containing the basis assumption for the an... This paper was concerned with the tensile mechanics behavior of the composite π-joint under static tensile loading. The numerical strength analysis methodology was presented containing the basis assumption for the analysis, the material modeling, and the selected element type. It was assumed that the composite ply had transverse isotropic material properties and the adhesive had linear elastic properties. With the goal of the strength analysis to determine the onset of the damage initiation and the ultimate failure load, two stiffness degradation models were discussed and a modified maximum stress failure criteria was presented. To verify the numerical model, a pull-off test scheme was performed and the experimental data of five specimens were given. The experimental results indicate that the damage initiation location and the failure load were consistent with numerical predictions and verified the feasibility of the numerical model. 展开更多
关键词 复合材料 胶粘剂 拉伸力学 复合层
下载PDF
A study on the porosity of CO_2 laser welding of titanium alloy 被引量:3
19
作者 陈俐 胡伦骥 巩水利 《China Welding》 EI CAS 2006年第1期1-5,共5页
The CO2 laser welding of BT20 titanium alloy and Ti-23Al-17Nb titanium aluminide was conducted to investigate into the porosity in titanium alloy weld. The results show that there are two sorts of porosities observed ... The CO2 laser welding of BT20 titanium alloy and Ti-23Al-17Nb titanium aluminide was conducted to investigate into the porosity in titanium alloy weld. The results show that there are two sorts of porosities observed in welds of titanium alloy laser welding based on the microscopic characteristics of the porosities. One is the metallurgical porosity with round and smooth inner wall, which results from the surface contamination. The other is the processing porosity with irregular and rough inner wall that displays the trace of the pool flowing, which results from the ruffle on the keyhole wall gathering together locally and closing down the gas in the keyhole into bubbles because of the keyhole fluctuating. The CO2 laser welding could break down easily the surface oxide film and produce little metallurgical porosity, but produces easily processing porosity when partial penetration or unstable-full penetration laser welding is conducted, which always occurs in the center of weld. 展开更多
关键词 POROSITY titanium alloy titanium aluminide CO2 laser welding
下载PDF
Numerical simulation of residual stress field induced by laser shock processing with square spot 被引量:2
20
作者 曹子文 车志刚 +1 位作者 邹世坤 费群星 《Journal of Shanghai University(English Edition)》 CAS 2011年第6期553-556,共4页
Laser shock processing(LSP),also known as laser peening,is a novel surface treatment technique in the past few years.Compressive residual stresses which imparted by LSP are very important for improving fatigue,corro... Laser shock processing(LSP),also known as laser peening,is a novel surface treatment technique in the past few years.Compressive residual stresses which imparted by LSP are very important for improving fatigue,corrosion and wea rresistance of metals.Finite element analysis(FEA) simulation using ABAQUS software has been applied to predict residualstresses induced by LSP on Ti-6Al-4V titanium alloy with laser pulse duration 30 ns and water confined ablation mode.The residual stress field generated by different shape laser spots was studied,and the square laser spot is shown the most suitability for avoiding stress lack phenomenon and overlapping LSP.Surface residual stresses and plastically affected depth within single square spot both increased with the increase of laser intensity and laser shock times.Furthermore,compared with circle and ellipse spot,the residual stress distribution in overlapping square spots is very uniform only with small overlapping ratio.LSP with square spot can process advantageous residual stress field,and this technique will be used widely. 展开更多
关键词 laser shock processing square spot TI-6AL-4V residual stress
下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部