On February 6, 2023, the doublet earthquake including two main shocks with magnitudes M_(W)7.8 and M_(W)7.5, occurred near the western side of the East Anatolian Fault at the southeast boundary of the Anatolian Platea...On February 6, 2023, the doublet earthquake including two main shocks with magnitudes M_(W)7.8 and M_(W)7.5, occurred near the western side of the East Anatolian Fault at the southeast boundary of the Anatolian Plateau in Turkey. Based on the WGM2012 Bouguer gravity anomaly data and the Etopo1topography data, this study first introduced a joint inversion of admittance and coherence functions and used the Bayesian optimal parameter estimation method to obtain the effective elastic thickness Teand loading ratio F of the lithosphere for various tectonic units in the Anatolian Plateau. Secondly, we discussed the characteristics and influencing factors of the lithospheric mechanical strength and analyzed its relationship with seismic activity. The lithospheric mechanical strength of the Anatolian Plateau showed clear lateral heterogeneity and a "weak-strong-weak" spatial pattern from east to west,reflecting various tectonic processes. At last, the strong seismic activity was found where the lithospheric strength was low in the Anatolian Plate. We also incorporated GPS strain rate and other results to investigate the tectonic background and primary causes of the M_(W)7.8 and M_(W)7.5 doublet earthquakes in Turkey. The results have a good insight into urban safety design in the Turkish region, including postdisaster rehabilitation, earthquake hazard assessment, and loss reduction.展开更多
The 6 August 2023 M_(W)5.5 Pingyuan earthquake is the largest earthquake in the central North China Plain(NCP)over the past two decades.Due to the thick sedimentary cover,no corresponding active faults have been repor...The 6 August 2023 M_(W)5.5 Pingyuan earthquake is the largest earthquake in the central North China Plain(NCP)over the past two decades.Due to the thick sedimentary cover,no corresponding active faults have been reported yet in the epicenter area.Thus,this earthquake presents a unique opportunity to delve into the buried active faults beneath the NCP.By integrating strong ground motion records,high-precision aftershock sequence relocation,and focal mechanism solutions,we gain insights into the seismotectonics of the Pingyuan earthquake.The aftershocks are clustered at depths ranging from 15 to 20 km and delineate a NE-SW trend,consistent with the distribution of ground motion records.A NE-SW nodal plane(226°)of the focal mechanism solutions is also derived from regional waveform inversion,suggesting that the mainshock was dominated by strike-slip motion with minor normal faulting component.Integrating regional geological data,we propose that an unrecognized fault between the NE-SW trending Gaotang and Lingxian-Yangxin faults is the seismogenic fault of this event.Based on the S-wave velocity structure beneath the NCP,this fault probably extends into the lower crust with a high angle.Considering the tectonic regime and stress state,we speculate that the interplay of shear strain between the Amurian and South China blocks and the hot upwelling magma from the subducted paleo Pacific flat slab significantly contributed to the generation of the Pingyuan earthquake.展开更多
Gravity field is the most basic physical field generated by the material properties of the Earth system.It reflects the spatial distribution,movement and change of materials determined by the interaction and dynamic p...Gravity field is the most basic physical field generated by the material properties of the Earth system.It reflects the spatial distribution,movement and change of materials determined by the interaction and dynamic process inside the Earth.Over the years,a variety of technical means have been used to detect the Earth’s gravity field and supported numerous studies on the global change,resource detection,geological structure movement,water resources change and other related fields of research.Here is part of the progress in surface and marine gravimetry obtained by Chinese geodesy scientists from 2019 to 2023 from the following aspects,including:①Continuous gravity network in Chinese mainland;②Application of superconducting gravity measurement;③Network adjustment for continental-scale gravity survey campaign and data quality control;④Regional time-variable gravity field and its application;⑤Research progress on novel technologies for gravity inversion;⑥Research progress on marine gravity field determination;⑦Application research on marine gravity field.展开更多
The terrestrial time-variable gravity measurements are characterized by a high signal-to-noise ratio and sensitivity to the sources of mass change in the Earth's crust.These gravity data have many applications,suc...The terrestrial time-variable gravity measurements are characterized by a high signal-to-noise ratio and sensitivity to the sources of mass change in the Earth's crust.These gravity data have many applications,such as surface deformation,groundwater storage changes,and mass migration before and after earthquakes.Based on repeated terrestrial gravity measurements at 198 gravity stations in the Sichuan-Yunnan region(SYR)from 2015 to 2017,we determine a time series of degree 120 gravity fields using the localized spherical harmonic(Slepian)basis functions.Our results show that adopting the first 6 Slepian basis functions is sufficient for effective localized Slepian modeling in the SYR.The differences between two gravity campaigns at the same time of year show an obvious correlation with tectonic features.The degree 120 timevariable gravity models presented in this paper will benefit the study of the regional mass migration inside the crust of the SYR and supplement the existing geophysical models for the China Seismic Experimental Site.展开更多
The western China lies in the convergence zone between Eurasian and Indian plates.It is an ideal place to study the lithosphere dynamics and tectonic evolutions on the continental Earth.The lithospheric strength is a ...The western China lies in the convergence zone between Eurasian and Indian plates.It is an ideal place to study the lithosphere dynamics and tectonic evolutions on the continental Earth.The lithospheric strength is a key factor in controlling the lithosphere dynamics and deformations.The effective elastic thickness(T_(e))of the lithosphere can be used to address the lithospheric strength.Previous researchers only used one of the admittance or coherence methods to investigate the T_(e) in the western China.Moreover,most of them ignored the internal loads of the lithosphere during the T_(e) calculation,which can produce large biases in the T_(e) estimations.To provide more reliable T_(e) estimations,we used a new joint inversion method that integrated both admittance and coherence techniques to compute the T_(e) in this study,with the WGM2012 gravity data,the ETOPO1 topographic data,and the Moho depths from the CRUST1.0 model.The internal loads are considered and investigated using the load ratio(F).Our results show that the joint inversion method can yield reliable T_(e) and F values.Based on the analysis of T_(e) and F distributions,we suggest(1)the northern Tibetan Plateau could be the front edge of the plate collision of Eurasian and Indian plates;(2)the southern and part of central Tibetan Plateau have a strong lithospheric mantle related to the rigid underthrusting Indian plate;(3)the southeastern Tibetan Plateau may be experiencing the delamination of lithosphere and upwelling of asthenosphere.展开更多
We developed an automatic seismic wave and phase detection software based on PhaseNet,an efficient and highly generalized deep learning neural network for P-and S-wave phase picking.The software organically combines m...We developed an automatic seismic wave and phase detection software based on PhaseNet,an efficient and highly generalized deep learning neural network for P-and S-wave phase picking.The software organically combines multiple modules including application terminal interface,docker container,data visualization,SSH protocol data transmission and other auxiliary modules.Characterized by a series of technologically powerful functions,the software is highly convenient for all users.To obtain the P-and S-wave picks,one only needs to prepare threecomponent seismic data as input and customize some parameters in the interface.In particular,the software can automatically identify complex waveforms(i.e.continuous or truncated waves)and support multiple types of input data such as SAC,MSEED,NumPy array,etc.A test on the dataset of the Wenchuan aftershocks shows the generalization ability and detection accuracy of the software.The software is expected to increase the efficiency and subjectivity in the manual processing of large amounts of seismic data,thereby providing convenience to regional network monitoring staffs and researchers in the study of Earth's interior.展开更多
In recent years,artificial intelligence technology has exhibited great potential in seismic signal recognition,setting off a new wave of research.Vast amounts of high-quality labeled data are required to develop and a...In recent years,artificial intelligence technology has exhibited great potential in seismic signal recognition,setting off a new wave of research.Vast amounts of high-quality labeled data are required to develop and apply artificial intelligence in seismology research.In this study,based on the 2013–2020 seismic cataloging reports of the China Earthquake Networks Center,we constructed an artificial intelligence seismological training dataset(“DiTing”)with the largest known total time length.Data were recorded using broadband and short-period seismometers.The obtained dataset included 2,734,748 threecomponent waveform traces from 787,010 regional seismic events,the corresponding P-and S-phase arrival time labels,and 641,025 P-wave first-motion polarity labels.All waveforms were sampled at 50 Hz and cut to a time length of 180 s starting from a random number of seconds before the occurrence of an earthquake.Each three-component waveform contained a considerable amount of descriptive information,such as the epicentral distance,back azimuth,and signal-to-noise ratios.The magnitudes of seismic events,epicentral distance,signal-to-noise ratio of P-wave data,and signal-to-noise ratio of S-wave data ranged from 0 to 7.7,0 to 330 km,–0.05 to 5.31 dB,and–0.05 to 4.73 dB,respectively.The dataset compiled in this study can serve as a high-quality benchmark for machine learning model development and data-driven seismological research on earthquake detection,seismic phase picking,first-motion polarity determination,earthquake magnitude prediction,early warning systems,and strong ground-motion prediction.Such research will further promote the development and application of artificial intelligence in seismology.展开更多
High-precision time-varying gravity field is an effective way to study the internal mass movement and understanding the spatio-temporal evolution process of the geodynamic system.Compared to the satellite gravity meas...High-precision time-varying gravity field is an effective way to study the internal mass movement and understanding the spatio-temporal evolution process of the geodynamic system.Compared to the satellite gravity measurement,the repeated terrestrial gravity observation can provide a more high-order signal related to the shallow crust and subsurface.However,the suitable and unified method for gravity model estimation is a key problem for further applications.In this study,we introduce the spherical hexahedron element to simulate the field source mass and forward model the change of gravity field located at the Sichuan-Yunnan region(99—104°E,23—29°N)in the four epochs from 2015 to 2017.Compared to the experimental results based on Slepian or spherical harmonics frequency domain method,this alternative approach is suitable for constructing the equivalent mass source model of regional-scale gravity data,by introducing the first-order smooth prior condition of gravity time-varying signal to suppress the high-frequency component of the signal.The results can provide a higher spatial resolution reference for regional gravity field modeling in the Sichuan-Yunnan region.展开更多
The China Seismic Experimental Site(CSES)is located at the intersection of the Tibetan Plateau,South China Block,and Indian Plate and has complex geological settings and intense crustal deformation,making it one of th...The China Seismic Experimental Site(CSES)is located at the intersection of the Tibetan Plateau,South China Block,and Indian Plate and has complex geological settings and intense crustal deformation,making it one of the most seismically active areas in Chinese mainland.A high-resolution,three-dimensional(3D)crust-mantle velocity structure is crucial for understanding seismotectonic environments,lithospheric deformation mechanisms,and deep dynamic processes.We first constructed a high-vertical-resolution 3D initial velocity model using the joint inversion of receiver functions and surface waves and then obtained a 3D P-and S-wave velocity model(CSES-VM1.0)with the highest lateral resolution of 0.25°for the CSES using double-difference tomography.Owing to the limitations of the Sn observation data,the resolution of the S-wave velocity model in the lower crust and upper mantle was reduced,making it closer to the initial model provided by joint inversion.A comparison with explosive-source seismic data showed that the synthetic P-wave first-arrival travel times of the new model were closer to the observations than those of the previous velocity models.The velocity cross-sections across the source areas of the 2022 Lushan MS6.1 and Ludian MS6.8 earthquakes reveal that the former earthquake occurred near a weak contact zone between the Tibetan Plateau and Sichuan Basin,and the rupture of the latter earthquake occurred in a granitic area,with the northern end blocked by rigid high-velocity bodies.A clear high-velocity anomaly zone is distributed along the western margin of the Yangtze Block,revealing the spatial distribution of Neoproterozoic intermediate-basic intrusions.This high-velocity zone significantly controls the morphology of fault zones and influences the rupture processes of major earthquakes.Two northeast-southwest and north-south trending high-velocity anomalies were found near Panzhihua,potentially related to Neoproterozoic and Middle-Late Permian intermediate-basic intrusions.The imaging results revealed the spatial distribution of the Lincang granitoid batholith,the uplifted zone of the central axis fault in the Simao Basin,and the Ailaoshan complex belt in the southwestern CSES,demonstrating a higher spatial resolution compared to previous results.Our velocity model provides an essential foundation for deep structural studies,high-precision earthquake locations,and strong ground motion simulations in the CSES.展开更多
Simulations of the spontaneous rupture of potential earthquakes in the vicinity of reservoir dams can provide accurate parameters for seismic resilience assessment,which is essential for improving the seismic performa...Simulations of the spontaneous rupture of potential earthquakes in the vicinity of reservoir dams can provide accurate parameters for seismic resilience assessment,which is essential for improving the seismic performance of reservoir dams.In simulations of potential spontaneous ruptures,fault geometry,regional stress fields,constitutive parameters of the fault friction law,and many other factors control the slip rate,morphology,and dislocation of the rupture,thereby affecting the simulated ground motion parameters.The focus of this study was to elucidate the effects of the background stress field on the nucleation and propagation of spontaneous ruptures based on the factors influencing potential M>7 earthquake events on the Leibo Middle Fault(LBMF)and the Mabian-Yanjing Fault(MB-YJF)in the Xiluodu dam(XLD)region.Our simulation results show that the magnitude of the regional background stress field plays a decisive role in whether a destructive earthquake exceeding the critical magnitude will occur.We found that the direction and magnitude of the regional stress significantly affect the range of rupture propagation on the fault plane,and fault geometry affects the spatial distribution of the rupture range.Under the same regional stress field magnitude and orientation,a more destructive,high-magnitude earthquake is more likely to occur on the LBMF than on the MB-YJF.展开更多
基金funded by the National Natural Science Foundation of China (Grant Nos.U1939205,41974095)the Basic Research Fund of the Institute of Geophysics,China Earthquake Administration (Grant Nos.DQJB21R30)。
文摘On February 6, 2023, the doublet earthquake including two main shocks with magnitudes M_(W)7.8 and M_(W)7.5, occurred near the western side of the East Anatolian Fault at the southeast boundary of the Anatolian Plateau in Turkey. Based on the WGM2012 Bouguer gravity anomaly data and the Etopo1topography data, this study first introduced a joint inversion of admittance and coherence functions and used the Bayesian optimal parameter estimation method to obtain the effective elastic thickness Teand loading ratio F of the lithosphere for various tectonic units in the Anatolian Plateau. Secondly, we discussed the characteristics and influencing factors of the lithospheric mechanical strength and analyzed its relationship with seismic activity. The lithospheric mechanical strength of the Anatolian Plateau showed clear lateral heterogeneity and a "weak-strong-weak" spatial pattern from east to west,reflecting various tectonic processes. At last, the strong seismic activity was found where the lithospheric strength was low in the Anatolian Plate. We also incorporated GPS strain rate and other results to investigate the tectonic background and primary causes of the M_(W)7.8 and M_(W)7.5 doublet earthquakes in Turkey. The results have a good insight into urban safety design in the Turkish region, including postdisaster rehabilitation, earthquake hazard assessment, and loss reduction.
基金supported from the National Natural Science Foundation of China(No.42374081)the Fundamental Research Funds for the Institute of Geophysics,China Earthquake Administration(Nos.DQJB23B22,DQJB22K36 and DQJB23Z04)Hong Research Grants Council(Nos.14306122 and 14308523)。
文摘The 6 August 2023 M_(W)5.5 Pingyuan earthquake is the largest earthquake in the central North China Plain(NCP)over the past two decades.Due to the thick sedimentary cover,no corresponding active faults have been reported yet in the epicenter area.Thus,this earthquake presents a unique opportunity to delve into the buried active faults beneath the NCP.By integrating strong ground motion records,high-precision aftershock sequence relocation,and focal mechanism solutions,we gain insights into the seismotectonics of the Pingyuan earthquake.The aftershocks are clustered at depths ranging from 15 to 20 km and delineate a NE-SW trend,consistent with the distribution of ground motion records.A NE-SW nodal plane(226°)of the focal mechanism solutions is also derived from regional waveform inversion,suggesting that the mainshock was dominated by strike-slip motion with minor normal faulting component.Integrating regional geological data,we propose that an unrecognized fault between the NE-SW trending Gaotang and Lingxian-Yangxin faults is the seismogenic fault of this event.Based on the S-wave velocity structure beneath the NCP,this fault probably extends into the lower crust with a high angle.Considering the tectonic regime and stress state,we speculate that the interplay of shear strain between the Amurian and South China blocks and the hot upwelling magma from the subducted paleo Pacific flat slab significantly contributed to the generation of the Pingyuan earthquake.
基金Open Fund of Hubei Luojia Laboratory(No.220100033)National Natural Science Foundation of China(Nos.42174108,42192535,42242015)。
文摘Gravity field is the most basic physical field generated by the material properties of the Earth system.It reflects the spatial distribution,movement and change of materials determined by the interaction and dynamic process inside the Earth.Over the years,a variety of technical means have been used to detect the Earth’s gravity field and supported numerous studies on the global change,resource detection,geological structure movement,water resources change and other related fields of research.Here is part of the progress in surface and marine gravimetry obtained by Chinese geodesy scientists from 2019 to 2023 from the following aspects,including:①Continuous gravity network in Chinese mainland;②Application of superconducting gravity measurement;③Network adjustment for continental-scale gravity survey campaign and data quality control;④Regional time-variable gravity field and its application;⑤Research progress on novel technologies for gravity inversion;⑥Research progress on marine gravity field determination;⑦Application research on marine gravity field.
基金the National Natural Science Foundation of China(Nos.41974095,41774090,and U1939205)the Special Fund of the Institute of Geophysics,China Earthquake Administration(Nos.DQJB20X09,and DQJB21R30)The first author acknowledges support from the China Postdoctoral Science Foundation(No.2018M641424)。
文摘The terrestrial time-variable gravity measurements are characterized by a high signal-to-noise ratio and sensitivity to the sources of mass change in the Earth's crust.These gravity data have many applications,such as surface deformation,groundwater storage changes,and mass migration before and after earthquakes.Based on repeated terrestrial gravity measurements at 198 gravity stations in the Sichuan-Yunnan region(SYR)from 2015 to 2017,we determine a time series of degree 120 gravity fields using the localized spherical harmonic(Slepian)basis functions.Our results show that adopting the first 6 Slepian basis functions is sufficient for effective localized Slepian modeling in the SYR.The differences between two gravity campaigns at the same time of year show an obvious correlation with tectonic features.The degree 120 timevariable gravity models presented in this paper will benefit the study of the regional mass migration inside the crust of the SYR and supplement the existing geophysical models for the China Seismic Experimental Site.
基金This work is supported by the Special Fund of the Institute of GeophysicsChina Earthquake Administration(No.DQJB20K31)+2 种基金the National Key R&D Program of China(Nos.2018YFC0603502 and2017YFC1500503)the National Natural Science Foundation of China(Nos.41774090 and U1939205)financial support by China Postdoctoral Science Foundation(No.2018M641424)。
文摘The western China lies in the convergence zone between Eurasian and Indian plates.It is an ideal place to study the lithosphere dynamics and tectonic evolutions on the continental Earth.The lithospheric strength is a key factor in controlling the lithosphere dynamics and deformations.The effective elastic thickness(T_(e))of the lithosphere can be used to address the lithospheric strength.Previous researchers only used one of the admittance or coherence methods to investigate the T_(e) in the western China.Moreover,most of them ignored the internal loads of the lithosphere during the T_(e) calculation,which can produce large biases in the T_(e) estimations.To provide more reliable T_(e) estimations,we used a new joint inversion method that integrated both admittance and coherence techniques to compute the T_(e) in this study,with the WGM2012 gravity data,the ETOPO1 topographic data,and the Moho depths from the CRUST1.0 model.The internal loads are considered and investigated using the load ratio(F).Our results show that the joint inversion method can yield reliable T_(e) and F values.Based on the analysis of T_(e) and F distributions,we suggest(1)the northern Tibetan Plateau could be the front edge of the plate collision of Eurasian and Indian plates;(2)the southern and part of central Tibetan Plateau have a strong lithospheric mantle related to the rigid underthrusting Indian plate;(3)the southeastern Tibetan Plateau may be experiencing the delamination of lithosphere and upwelling of asthenosphere.
基金This study is jointly sponsored by the Basic Scientific Research Fee of Institute of Geophysics,China Earthquake Administration(DQJB19A0114)the National Natural Science Foundation of China(41804047).
文摘We developed an automatic seismic wave and phase detection software based on PhaseNet,an efficient and highly generalized deep learning neural network for P-and S-wave phase picking.The software organically combines multiple modules including application terminal interface,docker container,data visualization,SSH protocol data transmission and other auxiliary modules.Characterized by a series of technologically powerful functions,the software is highly convenient for all users.To obtain the P-and S-wave picks,one only needs to prepare threecomponent seismic data as input and customize some parameters in the interface.In particular,the software can automatically identify complex waveforms(i.e.continuous or truncated waves)and support multiple types of input data such as SAC,MSEED,NumPy array,etc.A test on the dataset of the Wenchuan aftershocks shows the generalization ability and detection accuracy of the software.The software is expected to increase the efficiency and subjectivity in the manual processing of large amounts of seismic data,thereby providing convenience to regional network monitoring staffs and researchers in the study of Earth's interior.
基金the National Natural Science Foundation of China(Nos.41804047 and 42111540260)Fundamental Research Funds of the Institute of Geophysics,China Earthquake Administration(NO.DQJB19A0114)the Key Research Program of the Institute of Geology and Geophysics,Chinese Academy of Sciences(No.IGGCAS-201904).
文摘In recent years,artificial intelligence technology has exhibited great potential in seismic signal recognition,setting off a new wave of research.Vast amounts of high-quality labeled data are required to develop and apply artificial intelligence in seismology research.In this study,based on the 2013–2020 seismic cataloging reports of the China Earthquake Networks Center,we constructed an artificial intelligence seismological training dataset(“DiTing”)with the largest known total time length.Data were recorded using broadband and short-period seismometers.The obtained dataset included 2,734,748 threecomponent waveform traces from 787,010 regional seismic events,the corresponding P-and S-phase arrival time labels,and 641,025 P-wave first-motion polarity labels.All waveforms were sampled at 50 Hz and cut to a time length of 180 s starting from a random number of seconds before the occurrence of an earthquake.Each three-component waveform contained a considerable amount of descriptive information,such as the epicentral distance,back azimuth,and signal-to-noise ratios.The magnitudes of seismic events,epicentral distance,signal-to-noise ratio of P-wave data,and signal-to-noise ratio of S-wave data ranged from 0 to 7.7,0 to 330 km,–0.05 to 5.31 dB,and–0.05 to 4.73 dB,respectively.The dataset compiled in this study can serve as a high-quality benchmark for machine learning model development and data-driven seismological research on earthquake detection,seismic phase picking,first-motion polarity determination,earthquake magnitude prediction,early warning systems,and strong ground-motion prediction.Such research will further promote the development and application of artificial intelligence in seismology.
基金funded by National Natural Science Foundation of China(U1839207,U1939205)the earthquake tracking directional work task of China Earthquake Administration(No.DZ2022010214)+1 种基金Key project of Spark Program of Seismic Science and Technology of China Earthquake Administration(No.XH20008)S&T Program of Hebei(21375411D)。
文摘High-precision time-varying gravity field is an effective way to study the internal mass movement and understanding the spatio-temporal evolution process of the geodynamic system.Compared to the satellite gravity measurement,the repeated terrestrial gravity observation can provide a more high-order signal related to the shallow crust and subsurface.However,the suitable and unified method for gravity model estimation is a key problem for further applications.In this study,we introduce the spherical hexahedron element to simulate the field source mass and forward model the change of gravity field located at the Sichuan-Yunnan region(99—104°E,23—29°N)in the four epochs from 2015 to 2017.Compared to the experimental results based on Slepian or spherical harmonics frequency domain method,this alternative approach is suitable for constructing the equivalent mass source model of regional-scale gravity data,by introducing the first-order smooth prior condition of gravity time-varying signal to suppress the high-frequency component of the signal.The results can provide a higher spatial resolution reference for regional gravity field modeling in the Sichuan-Yunnan region.
基金supported by the National Key R&D Program of China(Grant No.2022YFF0800601)the National Natural Science Foundation of China(Grant No.U2039204)the Special Funds for Basic Scientific Research Business Fees of Institute of Geophysics,China Earthquake Administration(Grant No.DQJB21Z03)。
文摘The China Seismic Experimental Site(CSES)is located at the intersection of the Tibetan Plateau,South China Block,and Indian Plate and has complex geological settings and intense crustal deformation,making it one of the most seismically active areas in Chinese mainland.A high-resolution,three-dimensional(3D)crust-mantle velocity structure is crucial for understanding seismotectonic environments,lithospheric deformation mechanisms,and deep dynamic processes.We first constructed a high-vertical-resolution 3D initial velocity model using the joint inversion of receiver functions and surface waves and then obtained a 3D P-and S-wave velocity model(CSES-VM1.0)with the highest lateral resolution of 0.25°for the CSES using double-difference tomography.Owing to the limitations of the Sn observation data,the resolution of the S-wave velocity model in the lower crust and upper mantle was reduced,making it closer to the initial model provided by joint inversion.A comparison with explosive-source seismic data showed that the synthetic P-wave first-arrival travel times of the new model were closer to the observations than those of the previous velocity models.The velocity cross-sections across the source areas of the 2022 Lushan MS6.1 and Ludian MS6.8 earthquakes reveal that the former earthquake occurred near a weak contact zone between the Tibetan Plateau and Sichuan Basin,and the rupture of the latter earthquake occurred in a granitic area,with the northern end blocked by rigid high-velocity bodies.A clear high-velocity anomaly zone is distributed along the western margin of the Yangtze Block,revealing the spatial distribution of Neoproterozoic intermediate-basic intrusions.This high-velocity zone significantly controls the morphology of fault zones and influences the rupture processes of major earthquakes.Two northeast-southwest and north-south trending high-velocity anomalies were found near Panzhihua,potentially related to Neoproterozoic and Middle-Late Permian intermediate-basic intrusions.The imaging results revealed the spatial distribution of the Lincang granitoid batholith,the uplifted zone of the central axis fault in the Simao Basin,and the Ailaoshan complex belt in the southwestern CSES,demonstrating a higher spatial resolution compared to previous results.Our velocity model provides an essential foundation for deep structural studies,high-precision earthquake locations,and strong ground motion simulations in the CSES.
基金jointly funded by the National Key Research and Development Program of China(No.2017YFC0404901)the Special Scientific Research Fund of the Institute of Geophysics of China Earthquake Administration(Nos.DQJB19B27,DQJB19A0123,DQJB21X25,DQJB20X09)。
文摘Simulations of the spontaneous rupture of potential earthquakes in the vicinity of reservoir dams can provide accurate parameters for seismic resilience assessment,which is essential for improving the seismic performance of reservoir dams.In simulations of potential spontaneous ruptures,fault geometry,regional stress fields,constitutive parameters of the fault friction law,and many other factors control the slip rate,morphology,and dislocation of the rupture,thereby affecting the simulated ground motion parameters.The focus of this study was to elucidate the effects of the background stress field on the nucleation and propagation of spontaneous ruptures based on the factors influencing potential M>7 earthquake events on the Leibo Middle Fault(LBMF)and the Mabian-Yanjing Fault(MB-YJF)in the Xiluodu dam(XLD)region.Our simulation results show that the magnitude of the regional background stress field plays a decisive role in whether a destructive earthquake exceeding the critical magnitude will occur.We found that the direction and magnitude of the regional stress significantly affect the range of rupture propagation on the fault plane,and fault geometry affects the spatial distribution of the rupture range.Under the same regional stress field magnitude and orientation,a more destructive,high-magnitude earthquake is more likely to occur on the LBMF than on the MB-YJF.