期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Controlling the mechanical properties and corrosion behavior of biomedical TiZrNb alloys by combining recrystallization and spinodal decomposition
1
作者 Pengfei Ji Bohan Chen +5 位作者 Shuguang Liu Bo Li Chaoqun Xia Xinyu Zhang Mingzhen Ma Riping Liu 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2022年第15期227-238,共12页
Excellent comprehensive mechanical properties and corrosion resistance of TiZrNb equiatomic ratio medium-entropy alloy were obtained through recrystallization and spinodal decomposition.In addition to solid solution s... Excellent comprehensive mechanical properties and corrosion resistance of TiZrNb equiatomic ratio medium-entropy alloy were obtained through recrystallization and spinodal decomposition.In addition to solid solution strengthening and recrystallization,the excellent mechanical properties can also be attributed to the hindering effect of nanoprecipitation formed via spinodal decomposition on the movement of dislocations.The high atomic arrangement density due to spinodal decomposition reduces the surface energy of the alloy passivation film,thereby increasing the activation energy of dissolution and the bonding energy between atoms,which improve the corrosion resistance and stability of the alloy passivation film.This work provides a new strategy to control the mechanical properties and corrosion resistance by combining recrystallization and spinodal decomposition. 展开更多
关键词 Titanium ZIRCONIUM Mechanical properties Corrosion resistance Passive films
原文传递
A preliminary experimental investigation on the biotribocorrosion of a metal-on-polyethylene hip prosthesis in a hip simulator
2
作者 Shu YANG Jian PU +6 位作者 Xiaogang ZHANG Yali ZHANG Wen CUI Fengbao XIE Weiping LU Qin TAN Zhongmin JIN 《Friction》 SCIE EI CAS CSCD 2023年第6期1094-1106,共13页
Corrosion at the taper/trunnion interface of total hip replacement(THR)often results in severe complications.However,the underlying mechanisms of biotribocorrosion at the taper/trunnion interface during the long-term ... Corrosion at the taper/trunnion interface of total hip replacement(THR)often results in severe complications.However,the underlying mechanisms of biotribocorrosion at the taper/trunnion interface during the long-term walking gait cycles remain to be fully understood.In this study,a hip joint simulator was therefore instrumented with an electrochemical cell for in-situ monitoring of the tribocorrosion evolution in a metal-on-polyethylene(MoP)THR during a typical long-term walking gait.In addition,the biotribocorrosion mechanism was investigated via surface and chemical characterizations.The experimental results confirmed that the taper/trunnion interface dominated the contemporary MoP hip joint corrosion.Three cyclic variations in the open circuit potential(OCP)were observed throughout the long-term electrochemical measurements,attributed to the formation and disruption of the adsorbed protein layer.The corrosion exhibited an initial increase at each period,peaking at approximately 0.125 million cycles,followed by a subsequent gradual reduction.Surface and chemical analyses revealed the formation of a tribochemical reaction layer(tribolayer)on the worn surface of the taper/trunnion interface.The surface/chemical characterizations and the electrochemical measurements indicated that the adhesion force of the adsorbed protein layer was weaker than that of the tribolayer.In contrast,the opposite was true for the corrosion resistance.Based on the observations from this study,the tribocorrosion mechanism of the taper/trunnion interface under the long-term walking gait cycles is deduced. 展开更多
关键词 biotribocorrosion metal-on-polyethylene(MoP) adsorbed protein layer total hip replacement(THR)
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部