期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Effects of microstructure characteristics on the tensile properties and fracture toughness of TA15 alloy fabricated by hot isostatic pressing 被引量:1
1
作者 Langping Zhu Yu Pan +6 位作者 Yanjun Liu Zhiyu Sun Xiangning Wang Hai Nan Muhammad-Arif Mughal Dong Lu Xin Lu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第4期697-706,共10页
Powder hot isostatic pressing(HIP) is an effective method to achieve near-net-shape manufacturing of high-quality complex thinwalled titanium alloy parts, and it has received extensive attention in recent years. Howev... Powder hot isostatic pressing(HIP) is an effective method to achieve near-net-shape manufacturing of high-quality complex thinwalled titanium alloy parts, and it has received extensive attention in recent years. However, there are few reports about the microstructure characteristics on the strengthening and toughening mechanisms of powder hot isostatic pressed(HIPed) titanium alloys. Therefore, TA15powder was prepared into alloy by HIP approach, which was used to explore the microstructure characteristics at different HIP temperatures and the corresponding tensile properties and fracture toughness. Results show that the fabricated alloy has a “basket-like structure” when the HIP temperature is below 950℃, consisting of lath clusters and surrounding small equiaxed grains belts. When the HIP temperature is higher than 950℃, the microstructure gradually transforms into the Widmanstatten structure, accompanied by a significant increase in grain size. The tensile strength and elongation are reduced from 948 MPa and 17.3% for the 910℃ specimen to 861 MPa and 10% for the 970℃ specimen.The corresponding tensile fracture mode changes from transcrystalline plastic fracture to mixed fracture including intercrystalline cleavage.The fracture toughness of the specimens increases from 82.64 MPa·m^(1/2)for the 910℃ specimen to 140.18 MPa·m^(1/2)for the 970℃ specimen.Specimens below 950℃ tend to form holes due to the prior particle boundaries(PPBs), which is not conducive to toughening. Specimens above 950℃ have high fracture toughness due to the crack deflection, crack branching, and shear plastic deformation of the Widmanstatten structure. This study provides a valid reference for the development of powder HIPed titanium alloy. 展开更多
关键词 POWDER titanium alloy hot isostatic pressing STRENGTH fracture toughness
下载PDF
Chemical composition analysis on industrial scale ingots and castings of TiAl alloys
2
作者 Xian-fei Ding Yi-qun Zhao +4 位作者 Jia-bin Zuo Xin Feng Hai Nan Yong-feng Liang Yan-qing Su 《China Foundry》 SCIE CAS 2020年第6期441-446,共6页
The chemical composition variation of the TiAl-4722 alloys was examined in a batch of the industrial scale master ingots,and in the corresponding castings prepared by conventional vacuum arc remelting(VAR)combined wit... The chemical composition variation of the TiAl-4722 alloys was examined in a batch of the industrial scale master ingots,and in the corresponding castings prepared by conventional vacuum arc remelting(VAR)combined with induction skull melting(ISM)and investment casting processes.The content changes of major elements and interstitial elements were evaluated based on the chemical analysis at the top and bottom of the ingots and castings.Results show that the contents of C,N,H,Fe and Si have almost no change in the ingots and castings,suggesting that the chemical analysis on these elements can be based on the batch analysis.The O content keeps almost the same in different ingots,but exhibits relatively large differences in castings,which was probably influenced by the reaction between the shell mold and the molten alloy,and the spalling of face coat of the shell mold during casting.For the major elements of Al,Nb and Cr,the composition difference between the top and the bottom of the ingots is less than that of the castings.But for the O element,the trend is different,especially for the castings,suggesting that the investment casting is a homogenization process for Cr and Nb,but a differentiation process for O.The contents of major elements in castings fluctuate mainly in the same range as that in the ingots,indicating that the contents of the major elements are controllable during investment casting. 展开更多
关键词 TiAl alloys MELTING CASTING chemical composition casting ingot
下载PDF
Effects of heat treatments on microstructures of TiAl alloys
3
作者 Wen Yu Jianxin Zhou +5 位作者 Yajun Yin Zhixin Tu Xin Feng Hai Nan Junpin Lin Xianfei Ding 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2022年第6期1225-1230,共6页
This study aims to investigate the effects of heat treatments on the microstructure ofγ-TiAl alloys.Two Ti-47Al-2Cr-2Nb alloy ingots were manufactured by casting method and then heat-treated in two types of heat trea... This study aims to investigate the effects of heat treatments on the microstructure ofγ-TiAl alloys.Two Ti-47Al-2Cr-2Nb alloy ingots were manufactured by casting method and then heat-treated in two types of heat treatments.Their microstructures were studied by both optical and scanning electron microscopies.The chemical compositions of two ingots were determined as well.The ingot with lower Al content only obtains lamellar structures while the one higher in Al content obtains nearly lamellar and duplex structures after heat treatment within1270 to 1185℃.A small amount of B2 phase is found to be precipitated in both as-cast and heat-treated microstructures.They are distributed at grain boundaries when holding at a higher temperature,such as 1260℃.However,B2 phase is precipitated at grain boundaries and in colony interiors simultaneously after heat treatments happened at 1185℃.Furthermore,the effects of heat treatments on grain refinement and other microstructural parameters are discussed. 展开更多
关键词 TiAl alloys MICROSTRUCTURE heat treatment CASTING
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部