期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Lattice-Preferred orientations of olivine in subducting oceanic lithosphere derived from the observed seismic anisotropies in double seismic zones
1
作者 Peng Han Dongping Wei +2 位作者 Keliang Zhang Zhentian Sun Xiaoya Zhou 《Earthquake Science》 CSCD 2016年第4期243-258,共16页
Subduction zones can generally be classified into Mariana type and Chilean type depending on plate ages, plate thicknesses, subduction angles, back-arc deformation patterns, etc. The double seismic zones (DSZs) in s... Subduction zones can generally be classified into Mariana type and Chilean type depending on plate ages, plate thicknesses, subduction angles, back-arc deformation patterns, etc. The double seismic zones (DSZs) in sub- duction zones are mainly divided into type I and type II which, respectively, correspond to the Mariana type and Chilean type in most cases. Seismic anisotropy is an important parameter characterizing the geophysical fea- tures of the lithosphere, including the subduction zones, and can be described by the two parameters of delay time ~t and fast wave polarization direction ~b. We totally col- lected 524 seismic anisotropy data records from 24 DSZs and analyzed the statistical correlations between seismic anisotropy and the related physical parameters of DSZs. Our statistical analysis demonstrated that the fast wave polarization directions are parallel to the trench strike with no more than 30~ for most type I DSZs, while being nearlyperpendicular to the trench strike for type II DSZs. We also calculated roughly linear correlations that the delay time 6t increases with dip angles but decreases with subduction rates. A linear equation was summarized to describe the strong correlation between DSZ's subduction angle DSZ and seismic anisotropy in subduction zones. These results suggest that the anisotropic structure of the subducting lithosphere can be described as a possible equivalent crystal similar to the olivine crystal with three mutually orthogonal polarization axes, of which the longest and the second axes are nearly along the trench-perpendicular and trench-parallel directions, respectively. 展开更多
关键词 Seismic anisotropy Double seismic zonesSubduction zone processes Plate motions MICROSTRUCTURES
下载PDF
A Discussion on Correlations of Plate Motion with Seismic Anisotropy and Stress Field in Plate Boundary Zones
2
作者 Han Peng Liu Qianqian +1 位作者 Sun Zhentian Wei Dongping 《Earthquake Research in China》 CSCD 2015年第3期319-330,共12页
In many parts of the global plates,including subduction zones,mid-ocean ridges and even the interior of the continental plates,seismic anisotropy has a certain correlation with image of absolute plate motion( APM),or ... In many parts of the global plates,including subduction zones,mid-ocean ridges and even the interior of the continental plates,seismic anisotropy has a certain correlation with image of absolute plate motion( APM),or is in accord with the predominant direction of the intraplate stress field. In our study,a statistical analysis is done on the correlations of plate motion with seismic anisotropy as well as a stress field within nine plate boundaries which contain major subduction zones in the globe. Results indicate that absolute or relative plate motion( RPM) controls the seismic anisotropy and stress field of the plate boundary,which is especially obvious for the RPM. It can also be inferred that the correlation of RPM is better than that of APM. Because of the complexity of subduction mechanism and diversity of controlling factors at plate boundaries containing subduction zones,the correlation becomes much complex. Sources of anisotropy at various depths show different characteristics,and stress state is controlled by many factors,thus further discussions on the correlations are required. 展开更多
关键词 地震各向异性 板块边界带 内应力场 控制因素 运动图像 俯冲带 大陆板块 大洋中脊
下载PDF
Experimental Simulation on Dynamic Variation of the Permeability of High-Rank Coal Reservoirs 被引量:2
3
作者 何也 傅雪海 刘爱华 《Journal of Shanghai Jiaotong university(Science)》 EI 2017年第6期726-732,共7页
In terms of the coal reservoir permeability of effective stress, coal matrix shrinkage and gas slippage,we conduct the tests of gas permeability under constant confining pressure and effective stress, as well as illus... In terms of the coal reservoir permeability of effective stress, coal matrix shrinkage and gas slippage,we conduct the tests of gas permeability under constant confining pressure and effective stress, as well as illustrate the cumulating method of permeability increment caused by the effects of gas slippage and coal matrix shrinkage.The results show that under the constant confining pressure, gas slippage affecting coal permeability changes to effective stress affecting it mainly. The change point increases with the increase of the confining pressure. The gas slippage effect leads to high permeability under low confining pressure, but coal matrix expansion results in the low value as confining and gas pressures increase. Combined with the drainage process of coalbed methane(CBM)well, the permeability is divided into four change stages based on the above analysis about the three effects, which can improve the change regulation understanding. Four stages are the downward phase under effective stress,the conversion phase of effective stress-coal matrix contraction effect(mainly based on effective stress), the rising stage of the effective stress-coal matrix contraction effect(mainly based on coal matrix contraction effect) and the rising phase of coal matrix contraction-slippage effect(mainly based on slippage effect). Permeability of coal reservoir during the process of drainage and production goes through four stages. 展开更多
关键词 coalbed methane(CBM) PERMEABILITY high-rank coal reservoir dynamic variation effective stress coal matrix shrinkage gas slippage
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部