期刊文献+
共找到15篇文章
< 1 >
每页显示 20 50 100
Formation of the structure-Ⅱgas hydrate from low-concentration propane mixed with methane
1
作者 Sanya Du Xiaomin Han +8 位作者 Wenjiu Cai Jinlong Zhu Xiaobai Ma Songbai Han Dongfeng Chen Yusheng Zhao Hui Li Hailong Lu Xiaohui Yu 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第6期306-314,共9页
It has been recognized that a small amount of propane mixed with methane can change greatly in not only the thermodynamics but also the structural properties of gas hydrate.However,its mechanism is still not well unde... It has been recognized that a small amount of propane mixed with methane can change greatly in not only the thermodynamics but also the structural properties of gas hydrate.However,its mechanism is still not well understood yet.In this research,structure-Ⅱ(sⅡ)hydrate is synthesized using a methanepropane gas mixture with an initial mole ratio of 99:1,and it is found that large(5~(12)6~4)cages are cooccupied by multiple gases based on the rigid structure analysis of neutron diffraction data.The first principles calculation and molecular dynamics simulation are conducted to uncover the molecular mechanism for sⅡmethane-propane hydrate formation,revealing that the presence of propane inhibits the formation of structure-Ⅰ(sⅠ)hydrate but promotes sⅡhydrate formation.The results help to understand the accumulation mechanism of natural gas hydrate and benefit to optimize the condition for gas storage and transportation in hydrate form. 展开更多
关键词 Multiple guest molecules CLATHRATES Neutron powder diffraction Structural transformation Molecular mechanism
下载PDF
Research Progress on the Electrical Properties of Gas Hydrate-bearing Sediments
2
作者 TAN Kui ZHANG Qi HE Tao 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2023年第3期816-827,共12页
Electrical properties are important physical parameters of natural gas hydrate,and,specifically,resistivity has been widely used in the quantitative estimation of hydrate saturation.There are three main methods to stu... Electrical properties are important physical parameters of natural gas hydrate,and,specifically,resistivity has been widely used in the quantitative estimation of hydrate saturation.There are three main methods to study the electrical properties of gas hydrate-bearing sediments:experimental laboratory measurements,numerical simulation,and resistivity logging.Experimental measurements can be divided into three categories:normal electrical measurement,complex resistivity measurement,and electrical resistivity tomography.Experimental measurements show that the resistivity of hydrate-bearing sediment is affected by many factors,and its distribution as well as the hydrate saturation is not uniform;there is a distinct non-Archie phenomenon.The numerical method can simulate the resistivity of sediments by changing the hydrate occurrence state,saturation,distribution,etc.However,it needs to be combined with X-ray CT,nuclear magnetic resonance,and other imaging techniques to characterize the porous characteristics of the hydrate-bearing sediments.Resistivity well logging can easily identify hydrate layers based on their significantly higher resistivity than the background,but the field data of the hydrate layer also has a serious non-Archie phenomenon.Therefore,more experimental measurements and numerical simulation studies are needed to correct the parameters of Archie’s formula. 展开更多
关键词 resource exploration gas hydrate RESISTIVITY hydrate saturation numerical simulation well logging Archie's formula
下载PDF
Distributed optical fiber acoustic sensor for in situ monitoring of marine natural gas hydrates production for the first time in the Shenhu Area,China 被引量:2
3
作者 Xiang-ge He Xue-min Wu +6 位作者 Lei Wang Qian-yong Liang Li-juan Gu Fei Liu Hai-long Lu Yi Zhang Min Zhang 《China Geology》 2022年第2期322-329,共8页
The distributed acoustic sensor(DAS)uses a single optical cable as the sensing unit,which can capture the acoustic and vibration signals along the optical cable in real-time.So it is suitable for monitoring downhole p... The distributed acoustic sensor(DAS)uses a single optical cable as the sensing unit,which can capture the acoustic and vibration signals along the optical cable in real-time.So it is suitable for monitoring downhole production activities in the process of oil and gas development.The authors applied the DAS system in a gas production well in the South China Sea for in situ monitoring of the whole wellbore for the first time and obtained the distributed acoustic signals along the whole wellbore.These signals can clearly distinguish the vertical section,curve section,and horizontal production section.The collected acoustic signal with the frequency of approximately 50 Hz caused by the electric submersible pump exhibit a signal-to-noise ratio higher than 27 dB.By analyzing the acoustic signals in the production section,it can be located the layers with high gas production rates.Once an accurate physical model is built in the future,the gas production profile will be obtained.In addition,the DAS system can track the trajectory of downhole tools in the wellbore to guide the operation.Through the velocity analysis of the typical signals,the type of fluids in the wellbore can be distinguished.The successful application of the system provides a promising whole wellbore acoustic monitoring tool for the production of marine gas hydrate,with a good application prospect. 展开更多
关键词 Gas hydrate production monitoring Optical fiber sensor Distributed acoustic sensor In situ monitoring Fluid type NGHs exploration trial engineering Oil and gas exploration engineering Shenhu Area South China Sea
下载PDF
Economic Critical Resources for the Industrial Exploitation of Natural Gas Hydrate 被引量:1
4
作者 CHEN Xuejun LU Hailong +2 位作者 ZHANG Jiecheng YE Jianliang XIE Wenwei 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2022年第2期663-673,共11页
Since the implementation of several pilot production tests were in natural gas hydrate(NGH) reservoirs in terrestrial and marine settings, the study of NGH has entered a new stage of technological development for indu... Since the implementation of several pilot production tests were in natural gas hydrate(NGH) reservoirs in terrestrial and marine settings, the study of NGH has entered a new stage of technological development for industrial exploitation. Prior to the industrial exploitation of any given NGH reservoir, the economic feasibility should be examined. The first step of economic evaluation of a NGH reservoir is to know whether its resource amount meets the requirement for industrial exploitation. Unfortunately, few relevant studies have been conducted in this regard. In this study, the net present value(NPV) method is employed to estimate the economic critical resources required for the industrial exploitation of NGHs under different production scenarios. Sensitivity analysis is also performed in order to specify the effects of key factors, such as the number of production wells, gas price, technological improvement and tax incentive, on the economic critical resources. The results indicate that China requires the lowest economic critical resource for a NGH reservoir to be industrially exploited, ranging from 3.62 to 24.02 billion m3 methane. Changes in gas price and tax incentives also play significant roles in affecting the threshold and timeline for the industrial exploitation of NGH. 展开更多
关键词 natural gas hydrate industrial exploitation economic critical resource net present value recovery factor
下载PDF
Raman Micro-Imaging of the Coexistence of sⅠ and sⅡ Hydrates Formed from a Mixed Methane-Propane Gas in a Confined Space
5
作者 CAI Wenjiu ZHAN Linsen +1 位作者 HUANG Xin LU Hailong 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2022年第2期674-679,共6页
Natural gas hydrate contains a specific amount of heavy hydrocarbons, such as ethane, propane, etc., aside from the primary guest gas of methane. Although the coexistence of two or even three hydrate structures has be... Natural gas hydrate contains a specific amount of heavy hydrocarbons, such as ethane, propane, etc., aside from the primary guest gas of methane. Although the coexistence of two or even three hydrate structures has been discovered at several hydrate sites, the requisite formation mechanism is still not well understood. In-situ observation of the formation process of mixed methane-propane hydrate in a confined space was conducted using confocal Raman imaging microscopy. The Raman imaging results reveal that sI methane hydrate and sII mixed methane-propane hydrate are formed and coexist in the reaction system. In the confined space, the sI hydrate originates from the dissolved gas in water, while the sII hydrate is formed from free gas. The results obtained can help explain the coexistence of sI and sII hydrates found in natural hydrate samples, as well as providing insights into a possible dynamic scenario of hydrate reservoirs in geological history. 展开更多
关键词 Raman imaging mixed hydrate COEXISTENCE sⅠhydrate sⅡhydrate
下载PDF
Coexistence of natural gas hydrate,free gas and water in the gas hydrate system in the Shenhu Area,South China Sea 被引量:26
6
作者 Xu-wen Qin Jing-an Lu +6 位作者 Hai-long Lu Hai-jun Qiu Jin-qiang Liang Dong-ju Kang Lin-sen Zhan Hong-feng Lu Zeng-gui Kuang 《China Geology》 2020年第2期210-220,共11页
Shenhu Area is located in the Baiyun Sag of Pearl River Mouth Basin,which is on the northern continental slope of the South China Sea.Gas hydrates in this area have been intensively investigated,achieving a wide cover... Shenhu Area is located in the Baiyun Sag of Pearl River Mouth Basin,which is on the northern continental slope of the South China Sea.Gas hydrates in this area have been intensively investigated,achieving a wide coverage of the three-dimensional seismic survey,a large number of boreholes,and detailed data of the seismic survey,logging,and core analysis.In the beginning of 2020,China has successfully conducted the second offshore production test of gas hydrates in this area.In this paper,studies were made on the structure of the hydrate system for the production test,based on detailed logging data and core analysis of this area.As to the results of nuclear magnetic resonance(NMR)logging and sonic logging of Well GMGS6-SH02 drilled during the GMGS6 Expedition,the hydrate system on which the production well located can be divided into three layers:(1)207.8–253.4 mbsf,45.6 m thick,gas hydrate layer,with gas hydrate saturation of 0–54.5%(31%av.);(2)253.4–278 mbsf,24.6 m thick,mixing layer consisting of gas hydrates,free gas,and water,with gas hydrate saturation of 0–22%(10%av.)and free gas saturation of 0–32%(13%av.);(3)278–297 mbsf,19 m thick,with free gas saturation of less than 7%.Moreover,the pore water freshening identified in the sediment cores,taken from the depth below the theoretically calculated base of methane hydrate stability zone,indicates the occurrence of gas hydrate.All these data reveal that gas hydrates,free gas,and water coexist in the mixing layer from different aspects. 展开更多
关键词 Mixing layer Gas hydrate NMR logging Sonic logging Core analysis Oil gas exploration engineering Shenhu Area South China Sea China
下载PDF
Sediment permeability change on natural gas hydrate dissociation induced by depressurization 被引量:4
7
作者 Lei Wang Li-juan Gu Hai-long Lu 《China Geology》 2020年第2期221-229,共9页
The permeability of a natural gas hydrate reservoir is a critical parameter associated with gas hydrate production.Upon producing gas from a hydrate reservoir via depressurization,the permeability of sediments changes... The permeability of a natural gas hydrate reservoir is a critical parameter associated with gas hydrate production.Upon producing gas from a hydrate reservoir via depressurization,the permeability of sediments changes in two ways with hydrate dissociation,increasing with more pore space released from hydrate and decreasing due to pore compression by stronger effective stress related to depressurization.In order to study the evolution of sediment permeability during the production process with the depressurization method,an improved pore network model(PNM)method is developed to establish the permeability change model.In this model,permeability change induced by hydrate dissociation is investigated under hydrate occurrence morphology of pore filling and grain coating.The results obtained show that hydrate occurrence in sediment pore is with significant influence on permeability change.Within a reasonable degree of pore compression in field trial,the effect of pore space release on the reservoir permeability is greater than that of pore compression.The permeability of hydrate containing sediments keeps increasing in the course of gas production,no matter with what hydrate occurrence in sediment pore. 展开更多
关键词 Natural gas hydrate Reservoir sediment PERMEABILITY Pore network model DEPRESSURIZATION Oil gas exploration engineering South China Sea China
下载PDF
Numerical Study of Gas Production from a Methane Hydrate Reservoir Using Depressurization with Multi-wells 被引量:2
8
作者 SHANG Shilong GU Lijuan LU Hailong 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2021年第3期928-936,共9页
With the implementation of the production tests in permafrost and offshore regions in Canada,US,Japan,and China,the study of natural gas hydrate has progressed into the stage of technology development for industrial e... With the implementation of the production tests in permafrost and offshore regions in Canada,US,Japan,and China,the study of natural gas hydrate has progressed into the stage of technology development for industrial exploitation.The depressurization method is considered as a better strategy to produce gas from hydrate reservoirs based on production tests and laboratory experiments.Multi-well production is proposed to improve gas production efficiency,to meet the requirement for industrial production.For evaluating the applicability of multi-well production to hydrate exploitation,a 2D model is established,with numerical simulations of the performance of the multi-well pattern carried out.To understand the dissociation behavior of gas hydrate,the pressure and temperature distributions in the hydrate reservoir are specified,and the change in permeability of reservoir sediments is investigated.The results obtained indicate that multi-well production can improve the well connectivity,accelerate hydrate dissociation,enhance gas production rate and reduce water production as compared with single-well production. 展开更多
关键词 oil and gas upstream unconventional resources natural gas hydrate numerical simulation DEPRESSURIZATION
下载PDF
Preface: Special Topics on Study Progress of Natural Gas Hydrate 被引量:1
9
作者 LU Hailong HE Tao 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2022年第2期661-662,共2页
Natural gas hydrate is widely distributed in continental slope sediments and permafrost,taken as a potential energy resource due to its gigantic amount.To develop the technologies for the industrial exploitation of na... Natural gas hydrate is widely distributed in continental slope sediments and permafrost,taken as a potential energy resource due to its gigantic amount.To develop the technologies for the industrial exploitation of natural gas hydrate,several production tests were carried out in permafrost and marine hydrate reservoirs,e.g.tests in permafrost hydrate reservoirs in Mackenzie Delta and Alaskan North Slope(Boswell et al.,2017)in the Antarctic,and those in marine hydrate reservoirs in Nankai Trough,offshore Japan(Yamamoto et al.,2014,2018),and South China Sea(SCS)(Li et al.,2018;Ye et al.,2020).As encouraged by the results obtained from the production tests,more tests are planned to develop technology for industrial exploitation of natural gas hydrate(Collett et al.,2022).Although production test can be conducted in permafrost hydrate reservoir for cost efficiency,generally it is thought industrial exploitation will be realized in marine hydrate reservoir because it is estimated with over 90%of hydrate resource. 展开更多
关键词 RESERVOIR RESERVOIRS Mackenzie
下载PDF
Influence of Gas Hydrate on the Acoustic Properties of Sediment: A Comprehensive Review with a Focus on Experimental Measurements 被引量:1
10
作者 ZHANG Qi LIU Xin +1 位作者 HE Tao LU Hailong 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2022年第2期713-726,共14页
In recent years, natural gas hydrate has attracted increasing attention worldwide as a potential alternative energy source due to its attributes of wide distribution, large reserves, and low carbon. Since the acoustic... In recent years, natural gas hydrate has attracted increasing attention worldwide as a potential alternative energy source due to its attributes of wide distribution, large reserves, and low carbon. Since the acoustic characteristics of hydratebearing reservoirs clearly differ from those of adjacent formations, an acoustic approach, using seismic and acoustic logging, is one of the most direct, effective and widely used methods among the identification and characterization techniques for hydrate reservoir exploration. This review of research on the influence of hydrate(content and distribution) on the acoustic properties(velocity and attenuation) of sediments in the past two decades includes experimental studies based on different hydrate formation methods and measurements, as well as rock physics models. The main problems in current research are also pointed out and future prospects discussed. 展开更多
关键词 gas hydrate acoustic properties rock physics model experimental measurements
下载PDF
A continuous and long-term in-situ stress measuring method based on fiber optic. Part I: Theory of inverse differential strain analysis
11
作者 Kun-Peng Zhang Mian Chen +2 位作者 Chang-Jun Zhao Su Wang Yong-Dong Fan 《Petroleum Science》 SCIE EI CAS CSCD 2024年第2期1171-1189,共19页
A method for in-situ stress measurement via fiber optics was proposed. The method utilizes the relationship between rock mass elastic parameters and in-situ stress. The approach offers the advantage of long-term stres... A method for in-situ stress measurement via fiber optics was proposed. The method utilizes the relationship between rock mass elastic parameters and in-situ stress. The approach offers the advantage of long-term stress measurements with high spatial resolution and frequency, significantly enhancing the ability to measure in-situ stress. The sensing casing, spirally wrapped with fiber optic, is cemented into the formation to establish a formation sensing nerve. Injecting fluid into the casing generates strain disturbance, establishing the relationship between rock mass properties and treatment pressure.Moreover, an optimization algorithm is established to invert the elastic parameters of formation via fiber optic strains. In the first part of this paper series, we established the theoretical basis for the inverse differential strain analysis method for in-situ stress measurement, which was subsequently verified using an analytical model. This paper is the fundamental basis for the inverse differential strain analysis method. 展开更多
关键词 In-situ stress Fiber optic Orthotropic elastic Differential evolution ABAQUS
下载PDF
Morphological and Sulfur-Isotopic Characteristics of Pyrites in the Deep Sediments from Xisha Trough,South China Sea
12
作者 CHANG Jingyi LIU Yujia +4 位作者 LU Hailong LU Jing’an SU Xin YE Jianliang XIE Wenwei 《Journal of Ocean University of China》 CAS CSCD 2024年第1期138-148,共11页
Pyrite is one of the common authigenic minerals in marine sediments.Previous studies have shown that the morphological and isotopic characteristics of pyrite are closely related to the geochemical environment where it... Pyrite is one of the common authigenic minerals in marine sediments.Previous studies have shown that the morphological and isotopic characteristics of pyrite are closely related to the geochemical environment where it is formed.To better understand the for-mation mechanism of authigenic pyrite,we analyzed the isotopic composition,morphology,and distribution of pyrite in the sediment at 500m below the seafloor from Xisha Trough,South China Sea.Mineral morphologies were observed by scanning electron micros-copy and Raman spectrography.X-Ray computed tomography was applied to measure the particle size of pyrite.The size of pyrite crystals in the matrix sediment mainly ranged between 25 and 65µm(av.ca.40µm),although crystals were larger(av.ca.50μm)in the veins.The pyrites had a fine-grained truncated octahedral shape with occasionally well-developed growth steps,which implies the low growth rate and weak anaerobic oxidation of methane-sulfate reduction when pyrite was formed.Theδ^(34)S values of pyrites ranged from+20.8‰Vienna-defined Canyon Diablo Troilite(V-CDT)to+33.2‰V-CDT and from+44.8‰V-CDT to+48.9‰,which suggest two growth stages.In the first stage,with the continuous low methane flux,the pyrite possibly formed in an environment with good access to seawater.In the second stage,the pyrites mainly developed in sediment fractures and appeared in veins,probably due to the limited availability of sulfate.The less exposure of pyrite to the environment in the second stage was probably caused by sediment accumulation or perturbation.In this study,an episodic pyritization process was identified,and the paleoenvironment was reconstructed for the sediment investigated. 展开更多
关键词 PYRITE sulfur isotope AOM methane flux Xisha Trough South China Sea
下载PDF
Development of self-generated proppant based on modified low-density and low-viscosity epoxy resin and its evaluation 被引量:2
13
作者 Jia-Cheng Fan Zhan-Qing Qu +6 位作者 Tian-Kui Guo Ning Qi Ming Chen Jian Hou Ji-Jiang Ge Xiao-Qiang Liu Ji-Wei Wang 《Petroleum Science》 SCIE CAS CSCD 2022年第5期2240-2252,共13页
Hydraulic fracturing is a critical technology for the economic development of unconventional oil and gas reservoirs.The main factor influencing fracture propping and reservoir stimulation effect is proppant performanc... Hydraulic fracturing is a critical technology for the economic development of unconventional oil and gas reservoirs.The main factor influencing fracture propping and reservoir stimulation effect is proppant performance.The increasing depth of fractured oil and gas reservoirs is causing growing difficulty in hydraulic fracturing.Moreover,the migration of conventional proppants within the fracture is always limited due to small fracture width and rigid proppant structure.Thus,proppants with good transportation capacity and fracture propping effects are needed.First,a novel self-generated proppant based on toughened low-viscosity and low-density epoxy resin was developed to satisfy this demand.Then,proppant performances were evaluated.Low-viscosity and low-density epoxy resin was generated when the thiol-ene click chemical reaction product of eugenol and 1-thioglycerol reacts with the epichlorohydrin.Then,the resin was toughened with graphite particles to increase its compressive strength from50.8 to 72.1 MPa based on micro-cracking mechanism and crazing-nail anchor mechanism.The adduct of diethylene triamine and butyl glycidyl ether and the Si O2 nanoparticles were treated as the curing agent and emulsifier respectively to form the emulsion.The emulsion is transformed into solid particles of various sizes within a reservoir to prop the fracture.Evaluation shows good migration capacity of this self-generated proppant due to the low density of epoxy resin. 展开更多
关键词 Low-viscosity and low-density epoxy resin Resin toughening Self-generated proppant Performance evaluation
下载PDF
Semi-clathrate hydrate based carbon dioxide capture and separation techniques
14
作者 Lijuan Gu Hailong Lu 《Frontiers of Environmental Science & Engineering》 SCIE EI CSCD 2023年第12期1-29,共29页
CO_(2)is considered as the main contributor to global warming,and hydrate enclathration is an efficient way for carbon capture and separation(CCS).Semi-clathrate hydrate(SCH)is a type of clathrate hydrate capable of e... CO_(2)is considered as the main contributor to global warming,and hydrate enclathration is an efficient way for carbon capture and separation(CCS).Semi-clathrate hydrate(SCH)is a type of clathrate hydrate capable of encaging CO_(2)molecules under mild temperature and pressure conditions.SCH has numerous unique advantages,including high thermal stability,selective absorption of gas molecules with proper size and recyclable,making it a promising candidate for CCS.While SCH based CCS technology is in the developing stage and great efforts have to be conducted to improve the performance that is determined by their thermodynamical and structural properties.This review summarizes and compares the thermodynamic and structural properties of SCH and quaternary salt hydrates with gas mixtures to be captured and separated.Based on the description of the physical properties of SCH and hydrate of quaternary salts with gas mixture,the CO_(2)capture and separation from fuel gas,flue gas and biogas with SCH are reviewed.The review focuses on the use of tetra-nbutyl ammonium halide and tetra-n-butyl phosphonium halide,which are the current application hotspots.This review aims to provide guidance for the future applications of SCH. 展开更多
关键词 Semi-clathrate hydrate Tetra-n-butyl ammonium halide Tetra-n-butyl phosphonium halide Structure Thermodynamical properties CO_(2) capture and separation
原文传递
Frontier science and challenges on offshore carbon storage 被引量:1
15
作者 Haochu Ku Yihe Miao +5 位作者 Yaozu Wang Xi Chen Xuancan Zhu Hailong Lu Jia Li Lijun Yu 《Frontiers of Environmental Science & Engineering》 SCIE EI CSCD 2023年第7期11-34,共24页
Carbon capture and storage(CCS)technology is an imperative,strategic,and constitutive method to considerably reduce anthropogenic CO_(2)emissions and alleviate climate change issues.The ocean is the largest active car... Carbon capture and storage(CCS)technology is an imperative,strategic,and constitutive method to considerably reduce anthropogenic CO_(2)emissions and alleviate climate change issues.The ocean is the largest active carbon bank and an essential energy source on the Earth's surface.Compared to oceanic nature-based carbon dioxide removal(CDR),carbon capture from point sources with ocean storage is more appropriate for solving short-term climate change problems.This review focuses on the recent state-of-the-art developments in offshore carbon storage.It first discusses the current status and development prospects of CCS,associated with the chailenges and uncertainties of oceanic nature-based CDR.The second section outlines the mechanisms,sites,advantages,and ecologic hazards of direct offshore CO_(2)injection.The third section emphasizes the mechanisms,schemes,influencing factors,and recovery efficiency of ocean-based CO-CH_(4)replacement and CO_(2)-enhanced oil recovery are reviewed.In addition,this review discusses the economic aspects of offshore CCS and the preponderance of offshore CCs hubs.Finally,the upsides,limitations,and prospects for further investigation of offshore CO_(2)storage are presented. 展开更多
关键词 Offshore carbon storage Direct CO_(2) injection CO_(2) -CH_(4)replacement CO_(2)-EOR CCS hubs CO_(2) transport
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部