期刊文献+
共找到86篇文章
< 1 2 5 >
每页显示 20 50 100
Applications of metal–organic frameworks for green energy and environment: New advances in adsorptive gas separation, storage and removal 被引量:18
1
作者 Bin Wang Lin-Hua Xie +3 位作者 Xiaoqing Wang Xiao-Min Liu Jinping Li Jian-Rong Li 《Green Energy & Environment》 SCIE 2018年第3期191-228,共38页
The separation of gas molecules with similar physicochemical properties is of high importance but practically entails a substantial energy penalty in chemical industry. Meanwhile, clean energy gases such as H_2 and CH... The separation of gas molecules with similar physicochemical properties is of high importance but practically entails a substantial energy penalty in chemical industry. Meanwhile, clean energy gases such as H_2 and CH_4 are considered as promising candidates for the replacement of traditional fossil fuels. However, the technologies for the storage of these gases are still immature. In addition, the release of anthropogenic toxic gases into the atmosphere is a worldwide threat of growing concern. Both in academia and industry, considerable research efforts have been devoted to developing advanced porous materials for the effective and energy-efficient separation, storage, or capture of the related gases. In contrast to conventional inorganic porous materials such as zeolites and activated carbons, metal–organic frameworks(MOFs) are considered as a type of promising materials for gas separation and storage. In this contribution, we review the recent research advance of MOFs in some relevant applications, including CO_2 capture, O_2 purification, separation of light hydrocarbons, separation of noble gases, storage of gases(CH_4,H_2, and C_2 H_2) for energy, and removal of some gaseous air pollutants(NH_3, NO_2, and SO_2). Finally, an outlook regarding the challenges of the future research of MOFs in these directions is given. 展开更多
关键词 Metal–organic frameworks Gas separation and storage Light hydrocarbon Harmful gas Air purification
下载PDF
Tailor-made microstructures lead to high-performance robust PEO membrane for CO_(2)capture via green fabrication technique
2
作者 Wei-Shi Sun Ming-Jie Yin +3 位作者 Wen-Hai Zhang Shuo Li Naixin Wang Quan-Fu An 《Green Energy & Environment》 SCIE EI CAS CSCD 2023年第5期1389-1397,共9页
Emerging excessive greenhouse gas emissions pose great threats to the ecosystem,which thus requires efficient CO_(2)capture to mitigate the disastrous issue.In this report,large molecular size bisphenol A ethoxylate d... Emerging excessive greenhouse gas emissions pose great threats to the ecosystem,which thus requires efficient CO_(2)capture to mitigate the disastrous issue.In this report,large molecular size bisphenol A ethoxylate diacrylate(BPA)was employed to crosslink poly(ethylene glycol)methyl ether acrylate(PEGMEA)via the green and rapid UV polymerization strategy.The microstructure of such-prepared membrane could be conveniently tailored by tuning the ratio of the two prepolymers,aiming at obtaining the optimized microstructures with suitable mesh size and PEO sol content,which was approved by a novel low-field nuclear magnetic resonance technique.The optimum membrane overcomes the tradeoff challenge:dense microstructures lower the gas permeability while loose microstructures lower high-pressure-resistance capacity,realizing a high CO_(2)permeability of 1711 Barrer and 100-h long-term running stability under 15 atm.The proposed membrane fabrication approach,hence,opens a novel gate for developing high-performance robust membranes for CO_(2)capture. 展开更多
关键词 CO_(2)capture PEO membrane Membrane microstructures PEO sol PHOTO-CROSSLINKING
下载PDF
Enhanced catalytic performance of Cu-and/or Mn-loaded Fe-Sep catalysts for the oxidation of CO and ethyl acetate 被引量:2
3
作者 Lisha Liu Yong Song +4 位作者 Zhidan Fu Qing Ye Shuiyuan Cheng Tianfang Kang Hongxing Dai 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2017年第10期1427-1434,共8页
The Fe-modi fied sepiolite-supported Mn–Cu mixed oxide(Cux Mny/Fe-Sep) catalysts were prepared using the co-precipitation method.These materials were characterized by means of the XRD,N_2 adsorption–desorption,XPS,H... The Fe-modi fied sepiolite-supported Mn–Cu mixed oxide(Cux Mny/Fe-Sep) catalysts were prepared using the co-precipitation method.These materials were characterized by means of the XRD,N_2 adsorption–desorption,XPS,H_2-TPR,and O_2-TPD techniques,and their catalytic activities for CO and ethyl acetate oxidation were evaluated.The results show that catalytic activities of the Cux Mny/Fe-Sep samples were higher than those of the Cu1/Fe-Sep and Mn2/Fe-Sep samples,and the Mn/Cu molar ratio had a distinct in fluence on catalytic activity of the sample.Among the Cux Mny/Fe-Sep and Cu1Mn2/Sep samples,Cu1Mn2/Fe-Sep performed the best for CO and ethyl acetate oxidation,showing the highest reaction rate and the lowest T50 and T90 of 4.4×10^(-6) mmol·g-1·s-1,110,and 140 °C for CO oxidation,and 1.9×10^(-6) mmol·g-1·s-1,170,and210 °C for ethyl acetate oxidation,respectively.Moreover,the Cu1Mn2/Fe-Sep sample possessed the best lowtemperature reducibility and the lowest temperature of oxygen desorption as well as the highest surface Mn^(4+)/Mn^(3+) and Cu^(2+)/CuO atomic ratios.It is concluded that factors,such as the strong interaction between the Cu or Mn and the Fe-Sep support,good low-temperature reducibility,and good mobility of chemisorbed oxygen species,might account for the excellent catalytic activity of Cu1Mn2/Fe-Sep. 展开更多
关键词 氧化反应 乙酸乙酯 催化剂 铁铝 CO 催化性能 CU 负载
下载PDF
TiO2-incorporated polyelectrolyte composite membrane with transformable hydrophilicity/hydrophobicity for nanofiltration separation 被引量:2
4
作者 Yahua Lu Zhenping Qin +3 位作者 Naixin Wang Hongxia Guo Quanfu An Yucang Liang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2020年第10期2533-2541,共9页
The wettability of the membrane surface has shown obvious influent on the separation performance of the membrane.In this work,a hydrophilic PDA-[PDDA/TiO2]+Cl-membrane was prepared by a one-step codeposition of poly(d... The wettability of the membrane surface has shown obvious influent on the separation performance of the membrane.In this work,a hydrophilic PDA-[PDDA/TiO2]+Cl-membrane was prepared by a one-step codeposition of poly(diallyldimethylammonium chloride)(PDDA)polyelectrolyte solution containing positively charged TiO2@PDDA nanoparticles with the assistance of dopamine(DA).Such positively charged membrane can be transformed into a hydrophobic membrane PDA-[PDDA/TiO2]+PFO-via the counterion exchange between Cl-and PFO-(perfluorooctanoate).The transformation between hydrophilicity and hydrophobicity is reversible.For both hydrophilic and hydrophobic membranes,the nanofiltration performances were respectively investigated by the aqueous solution and ethanol solution of dyes including methyl blue(MB),Congo red(CR)and Evans blue(EB),and as well metal salt aqueous solution.The consecutive running stability and anti-fouling performance of both hydrophilic and hydrophobic membranes were explored.The results revealed that both membranes showed high nanofiltration performances for retention of dyes in(non)aqueous solution.For the hydrophilic membrane,the rejection of salts in a sequence is MgSO4>Na2SO4>MgCl2>NaCl.Moreover,both of the hydrophilic and hydrophobic membranes showed high stability and antifouling property. 展开更多
关键词 Counterion exchange Wettability REVERSIBILITY Dopamine TiO2-incorporated polyelectrolyte composite membrane (non)aqueous nanofiltration
下载PDF
Effect on electrochemical reduction of nitrogen to ammonia under ambient conditions: Challenges and opportunities for chemical fuels 被引量:2
5
作者 Lijuan Niu Li An +1 位作者 Xiayan Wang Zaicheng Sun 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第10期304-318,I0009,共16页
The nitrogen cycle plays an important role in nature,but N-containing products cannot meet human needs.The electrochemical synthesis of ammonia under ambient conditions has attracted the interest of many researchers b... The nitrogen cycle plays an important role in nature,but N-containing products cannot meet human needs.The electrochemical synthesis of ammonia under ambient conditions has attracted the interest of many researchers because it provides a clean and pollution-free synthesis method;however,it has certain difficulties,including a high activation energy,multiple electron transfer,and hydrogenation.Thermodynamic factors limit the selectivity and activity of ammonia synthesis techniques.This review summarizes progress in the electrochemical synthesis of ammonia from theory and experiment.Theoretically,the reduction of nitrogen molecules is analyzed using orbit theory and the thermodynamic reaction pathways.Experimentally,we first discuss the effect of the experimental setup on the nitrogen reduction reaction,and then the four critical of catalysts,including size,electronic,coordination,and orientation effects.These issues must be considered to produce highly-efficient catalysts for electrochemical nitrogen reduction(eNRR).This review provides an overview of the eNRR to enable future researchers to design rational catalysts. 展开更多
关键词 Nitrogen reduction reaction NRR ELECTROCATALYST Nitrogen-fixing
下载PDF
Engineer Nanoscale Defects into Selective Channels:MOF-Enhanced Li^(+) Separation by Porous Layered Double Hydroxide Membrane 被引量:1
6
作者 Yahua Lu Rongkun Zhou +5 位作者 Naixin Wang Yuye Yang Zilong Zheng Miao Zhang Quan-Fu An Jiayin Yuan 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第9期325-336,共12页
Two-dimensional(2D)membrane-based ion separation technology has been increasingly explored to address the problem of lithium resource shortage,yet it remains a sound challenge to design 2D membranes of high selectivit... Two-dimensional(2D)membrane-based ion separation technology has been increasingly explored to address the problem of lithium resource shortage,yet it remains a sound challenge to design 2D membranes of high selectivity and permeability for ion separation applications.Zeolitic imidazolate framework functionalized modified layered double hydroxide(ZIF-8@MLDH)composite membranes with high lithium-ion(Li^(+)) permeability and excellent operational stability were obtained in this work by in situ depositing functional ZIF-8 nanoparticles into the nanopores acting as framework defects in MLDH membranes.The defect-rich framework amplified the permeability of Li^(+),and the site-selective growth of ZIF-8 in the framework defects bettered its selectivity.Specifically speaking,the ZIF-8@MLDH membranes featured a high permeation rate of Li^(+) up to 1.73 mol m^(−2) h^(−1) and a desirable selectiv-ity of Li^(+)/Mg^(2+) up to 31.9.Simulations supported that the simultaneously enhanced selectivity and permeability of Li+are attributed to changes in the type of mass transfer channels and the difference in the dehydration capacity of hydrated metal cations when they pass through nanochannels of ZIF-8.This study will inspire the ongoing research of high-performance 2D membranes through the engineering of defects. 展开更多
关键词 Nanoscale defect construction Nanoparticles restrict growth Two-dimensional composite membrane Lithium-ion extraction High stability
下载PDF
Preface to Special Issue on Environmental and Energy Catalysis
7
作者 董帆 邓积光 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2018年第4期565-565,共1页
Environmental pollution and energy storage are two major challenges faced by human beings.The magnitude of them is ever‐increasing due to rapid pace of urbanization and industrialization.In view of this,to achieve gr... Environmental pollution and energy storage are two major challenges faced by human beings.The magnitude of them is ever‐increasing due to rapid pace of urbanization and industrialization.In view of this,to achieve green environment and provide clean energy for human beings are pivotal for sustainability.The catalysis technology plays dominant role in addressing these issues.The nano/microstructured catalyst with intriguing physical and chemical properties could offer numerous opportunities to realize environmental sustainability and clean energy production.In the past two decades,great advances have been made on the design,synthesis and mechanistic understanding of typical catalysts for environmental and energetic applications.These new catalysts in various fashions can be classified into three main types,thermal catalysis,photocatalysis and electro catalysis.In some cases,two types can be combined together,such as photoelectrocatalysis and photothermal catalysis,to achieve higher catalysis efficiency.The features of catalysts can be further tailored to allow for enhanced catalytic performance in pollutant degradation and energy conversion.Advanced in situ techniques have been applied to explore and reveal the catalytic mechanisms. 展开更多
关键词 ENVIRONMENTAL POLLUTION CHALLENGES FACED
下载PDF
Defective layered Mn-based cathode materials with excellent performance via ion exchange for Li-ion batteries
8
作者 Yongheng Si Kun Bai +4 位作者 Yaxin Wang Han Lu Litong Liu Ziyan Long Yujuan Zhao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第7期537-546,I0012,共11页
Defective layered Mn-based materials were synthesized by Li/Na ion exchange to improve their electrochemical activity and Coulombic efficiency.The annealing temperature of the Na precursors was important to control th... Defective layered Mn-based materials were synthesized by Li/Na ion exchange to improve their electrochemical activity and Coulombic efficiency.The annealing temperature of the Na precursors was important to control the P3-P2 phase transition,which directly affected the structure and electrochemical characteristics of the final products obtained by ion exchange.The O3-Li_(0.78)[Li_(0.25)Fe_(0.075)Mn_(0.675)]O_(δ) cathode made from a P3-type precursor calcined at 700℃ was analyzed using X-ray photoelectron spectrometry and electron paramagnetic resonance.The results showed that the presence of abundant trivalent manganese and defects resulted in a discharge capacity of 230 mAh/g with an initial Coulombic efficiency of about 109%.Afterward,galvanostatic intermittent titration was performed to examine the Li^(+) ion diffusion coefficients,which affected the reversible capacity.First principles calculations suggested that the charge redistribution induced by oxygen vacancies(OV_(s))greatly affected the local Mn coordination environment and enhanced the structural activity.Moreover,the Li-deficient cathode was a perfect match for the pre-lithiation anode,providing a novel approach to improve the initial Coulombic efficiency and activity of Mn-based materials in the commercial application. 展开更多
关键词 Ion exchange Defective cathode materials Oxygen vacancies Initial coulombic efficiency DFT calculations
下载PDF
Recovery of greenhouse gas as cleaner fossil fuel contributes to carbon neutrality
9
作者 Xin Zhang Jian-Rong Li 《Green Energy & Environment》 SCIE EI CSCD 2023年第2期351-353,共3页
Under the context of carbon neutrality of China,it is urgent to shift our energy supply towards cleaner fuels as well as to reduce the greenhouse gas emission.Currently,coal is the main fossil fuel energy source of Ch... Under the context of carbon neutrality of China,it is urgent to shift our energy supply towards cleaner fuels as well as to reduce the greenhouse gas emission.Currently,coal is the main fossil fuel energy source of China.The country is striving hard to replace it with methane,a cleaner fossil fuel.Although China has rich geological resources of methane as coal bed methane(CBM)reserves,it is quite challenging to utilize them due to low concentration.The CBM is however mainly emitted directly to atmosphere during coal mining,causing waste of the resource and huge contribution to greenhouse effect.The recent work by Yang et al.demonstrated a potential solution to extract low concentration methane selectively from CBM through using MOF materials as sorbents.Such kind of materials and associated separation technology are promising to reduce greenhouse gas emission and promote the methane production capability,which would contribute to carbon neutrality in dual pathways. 展开更多
关键词 Carbon neutrality Coal bed methane Metal–organic frameworks Greenhouse gas Fossil fuel
下载PDF
Advances of manganese-oxides-based catalysts for indoor formaldehyde removal
10
作者 Jiayu Zheng Wenkang Zhao +5 位作者 Liyun Song Hao Wang Hui Yan Ge Chen Changbao Han Jiujun Zhang 《Green Energy & Environment》 SCIE EI CAS CSCD 2023年第3期626-653,共28页
Formaldehyde(HCHO)has been identified as one of the most common indoor pollutions nowadays.Manganese oxides(MnO_(x))are considered to be a promising catalytic material used in indoor HCHO oxidation removal due to thei... Formaldehyde(HCHO)has been identified as one of the most common indoor pollutions nowadays.Manganese oxides(MnO_(x))are considered to be a promising catalytic material used in indoor HCHO oxidation removal due to their high catalytic activity,low-cost,and environmentally friendly.In this paper,the progress in developing MnO_(x)-based catalysts for HCHO removal is comprehensively reviewed for exploring the mechanisms of catalytic oxidation and catalytic deactivation.The catalytic oxidation mechanisms based on three typical theory models(Mars-van-Krevelen,Eley-Rideal and Langmuir-Hinshelwood)are discussed and summarized.Furthermore,the research status of catalytic deactivation,catalysts’regeneration and integrated application of MnO_(x)-based catalysts for indoor HCHO removal are detailed in the review.Finally,the technical challenges in developing MnO_(x)-based catalysts for indoor HCHO removal are analyzed and the possible research direction is also proposed for overcoming the challenges toward practical application of such catalysts. 展开更多
关键词 Manganese dioxide(MnOx) Formaldehyde(HCHO) Catalytic oxidation Room temperature Indoors
下载PDF
Direct observation of oxygen vacancy formation and migration over ceria surface by in situ environmental transmission electron microscopy
11
作者 Dawei Pang Wei Li +7 位作者 Ningqiang Zhang Hong He Shengcheng Mao Yanhui Chen Liwei Cao Chong Li Ang Li Xiaodong Han 《Journal of Rare Earths》 SCIE EI CAS CSCD 2024年第4期676-682,共7页
The extremely high structural tolerance of ceria to oxygen vacancies(Ov)has made it a desirable catalytic material for the hydrocarbon oxidation to chemicals and pharmaceuticals and the reduction of gaseous pollutants... The extremely high structural tolerance of ceria to oxygen vacancies(Ov)has made it a desirable catalytic material for the hydrocarbon oxidation to chemicals and pharmaceuticals and the reduction of gaseous pollutants.It is proposed that the formation and diffusion of Ov originate from its outstanding reduction property.However,the formation and diffusion process of Ov over the surface of ceria at the atomic level is still unknown.Herein,the structural and valence evolution of CeO_(2)(111)surfaces in reductive,oxidative and vacuum environments from room temperature up to 700℃was studied with in situ aberration-corrected environmental transmission electron microscopy(ETEM)experiments.Ov is found to form under a high vacuum at elevated temperatures;however,the surface can recover to the initial state through the adsorption of oxygen atoms in an oxygen-contained environment.Furthermore,in hydrogen environment,the step-CeO_(2)(111)surface is not stable at elevated temperatures;thus,the steps tend to be eliminated with increasing temperature.Combined with first-principles density function calculations(DFT),it is proposed that O-terminated surfaces would develop in a hypoxic environment due to the dynamic diffusion of Ov from the outer surface to the subsurface.Furthermore,in a reductive environment,H2 facilitates the formation and diffusion of Ov while Ce-terminated surfaces develope.These results reveal dynamic atomic-scale interplay between the nanoceria surface and gas,thereby providing fundamental insights into the Ov-dependent reaction of nano-CeO_(2) during catalytic processes. 展开更多
关键词 CERIA Direct observation In situ ETEM Oxygen vacancy Density function calculations RAREEARTHS
原文传递
Degradation properties of fulvic acid and its microbially driven mechanism from a partial nitritation bioreactor through multi-spectral and bioinformatic analysis
12
作者 Quanhao Dou Li Zhang +5 位作者 Tingjun Dong Zixuan Song Xuepeng Fan Yongzhen Peng Xiayan Wang Jiachun Yang 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2024年第1期318-331,共14页
This study employed multispectral techniques to evaluate fulvic acid(FA)compositional characteristic and elucidate its biodegradation mechanisms during partial nitritation(PN)process.Results showed that FA removal eff... This study employed multispectral techniques to evaluate fulvic acid(FA)compositional characteristic and elucidate its biodegradation mechanisms during partial nitritation(PN)process.Results showed that FA removal efficiency(FRE)decreased from 90.22 to 23.11%when FA concentrations in the reactor were increased from 0 to 162.30 mg/L,and that molecular size,degree of aromatization and humification of the effluent FA macromolecules all increased after treatment.Microbial population analysis indicated that the proliferation of the Comamonas,OLB12 and Thauera exhibit high FA utilization capacity in lower concentrations(<50.59 mg/L),promoting the degradation and removal of macromolecular FA.In addition,the sustained increase in external FA may decrease the abundance of above functional microorganisms,resulting in a rapid drop in FRE.Furthermore,from the genetic perspective,the elevated FA levels restricted carbohydrate(ko00620,ko00010 and ko00020)and nitrogen(HAO,AMO,NIR and NOR)metabolism-related pathways,thereby impeding FA removal and total nitrogen loss associated with N_(2)O emissions. 展开更多
关键词 Partial nitritation Fulvic acid 3DEEM-PARAFAC UV/Vis Microbially driven mechanism
原文传递
Membrane materials in the pervaporation separation of aromatic/aliphatic hydrocarbon mixtures—A review 被引量:8
13
作者 Hong-Xia Liu Naixin Wang +2 位作者 Cui Zhao Shulan Ji Jian-Rong Li 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2018年第1期1-16,共16页
The separation of aromatic/aliphatic hydrocarbon mixtures is a significant process in chemical industry, but challenged in some cases. Compared with conventional separation technologies, pervaporation is quite promisi... The separation of aromatic/aliphatic hydrocarbon mixtures is a significant process in chemical industry, but challenged in some cases. Compared with conventional separation technologies, pervaporation is quite promising in terms of its economical, energy-saving, and eco-friendly advantages. However, this technique has not been used in industry for separating aromatic/aliphatic mixtures yet. One of the main reasons is that the separation performance of existed pervaporation membranes is unsatisfactory. Membrane material is an important factor that affects the separation performance. This review provides an overview on the advances in studying membrane materials for the pervaporation separation of aromatic/aliphatic mixtures over the past decade. Explored pristine polymers and their hybrid materials(as hybrid membranes) are summarized to highlight their nature and separation performance. We anticipate that this review could provide some guidance in the development of new materials for the aromatic/aliphatic pervaporation separation. 展开更多
关键词 分离技术 烃混合物 脂肪族 膜材料 评论 化学工业 混合材料 分离性能
下载PDF
The potential of pervaporation for biofuel recovery from fermentation:An energy consumption point of view 被引量:3
14
作者 Peiyao Zheng Chong Li +2 位作者 NaixinWang Jie Li Quanfu An 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2019年第6期1296-1306,共11页
Recovering alcohols from dilute fermentation broth is an emergent task in bio-fuel production process. Since they are primary planned for fuels, energy required to separate these alcohols should be considered in evalu... Recovering alcohols from dilute fermentation broth is an emergent task in bio-fuel production process. Since they are primary planned for fuels, energy required to separate these alcohols should be considered in evaluating the potential of a separation technology. A membrane-based process, pervaporation, is of special interest because of its environmental friendliness and easy integrating character. This review probes into the fundamentals of pervaporation especially in terms of the heat required for evaporation. Meanwhile, the separation data of the most representative alcohol-selective pervaporation membranes reported in the literatures are collected and compared with the vapor–liquid equilibrium curve, which represents the distillation selectivity. They include:inorganic membranes, silicon rubber based membranes, Mixed Matrix Membranes and some other special materials. By doing so, the status of alcohol recovery via pervaporation would be more clear for researchers.For ethanol recovery, it is selectivity rather than flux that is in urgent need of solution. While for butanol recovery,membranes with satisfactory selectivity have been developed, increasing the separation capacity would be more pressing. 展开更多
关键词 Bio-alcohol PERVAPORATION Energy SELECTIVITY VAPOR-LIQUID equilibrium
下载PDF
PDMS/ZIF-8 coating polymeric hollow fiber substrate for alcohol permselective pervaporation membranes 被引量:2
15
作者 Jie Li Ying Labreche +2 位作者 Naixin Wang Shulan Ji Quanfu An 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2019年第10期2376-2382,共7页
In order to develop high performance composite membranes for alcohol permselective pervaporation(PV),poly(dimethylsiloxane)/ZIF-8(PDMS/ZIF-8)coated polymeric hollow fiber membranes were studied in this research.First,... In order to develop high performance composite membranes for alcohol permselective pervaporation(PV),poly(dimethylsiloxane)/ZIF-8(PDMS/ZIF-8)coated polymeric hollow fiber membranes were studied in this research.First,PDMS was used for the active layer,and Torlon?,PVDF,Ultem?,and Matrimid?with different porosity were used as support layer for fabrication of hollow fiber composite membranes.The performance of the membranes varied with different hollow fiber substrates was investigated.Pure gas permeance of the hollow fiber was tested to investigate the pore size of all fibers.The effect of support layer on the mass transfer in hydrophobic PV composite membrane was investigated.The results show that proper porosity and pore diameter of the support are demanded to minimize the Knudsen effect.Based on the result,ZIF-8 was introduced to prepare more selective separation layer,in order to improve the PV performance.The PDMS/ZIF-8/Torlon?membrane had a separation factor of 8.9 and a total flux of 847 g·m-2·h-1.This hollow fiber PDMS/ZIF-8/Torlon?composite membrane has a great potential in the industrial application. 展开更多
关键词 PERVAPORATION Hollow fiber PDMS/ZIF-8 Torlon■ PVDF Ultem■ Matrimid■
下载PDF
Encapsulation of bimetallic phosphides into graphitized carbon for pH-universal hydrogen evolution reaction
16
作者 Jian Zhou Yibo Dou +3 位作者 Tao He Xiang-Jing Kong Lin-Hua Xie Jian-Rong Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第12期253-261,I0005,共10页
Exploring nonprecious electrocatalysts for water splitting with high efficiency and durability is critically important.Herein,bimetallic phosphides are encapsulated into graphitized carbon to construct a C@NiCoP compo... Exploring nonprecious electrocatalysts for water splitting with high efficiency and durability is critically important.Herein,bimetallic phosphides are encapsulated into graphitized carbon to construct a C@NiCoP composite nanoarray using bimetallic metal-organic framework(MOF) as a self-sacrificial template.The resulting C@NiCoP exhibits superior performance for pH-universal electrocatalytic hydrogen evolution reaction(HER),particularly representing a low overpotential of 46.3 mV at 10 mA cm^(-2) and Tafel slope of 44.1 mV dec^(-1) in alkaline media.The structural characterizations combined with theoretical calculation demonstrate that tailored electronic structure from bimetal atoms and the synergistic effect with graphitized carbon layer could jointly optimize the adsorption ability of hydrogen on active sites in HER process,and enhance the electrical conductivity as well.In addition,the carbon layer served as a protecting shell also prevents highly dispersed NiCoP components from agglomeration and/or loss in harsh media,finally improving the durability.This work thus provides a new insight into optimizing activity and stability of pH-universal electrocatalysts by the nanostructural design and electronic structure modulation. 展开更多
关键词 Bimetallic phosphides Graphitized carbon Hydrogen evolution reaction MOF template Electronic structure
下载PDF
Mechanistic insights into homogeneous electrocatalytic reaction for energy storage using finite element simulation
17
作者 Peng Song Yan Li Shuang Yin 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2022年第2期285-296,共12页
The application of homogeneous electrocatalytic reactions in energy storage and conversion has driven surging interests of researchers in exploring the reaction mechanisms of molecular catalysts.In this paper,homogene... The application of homogeneous electrocatalytic reactions in energy storage and conversion has driven surging interests of researchers in exploring the reaction mechanisms of molecular catalysts.In this paper,homogeneous electrocatalytic reaction between hydroxymethylferrocene(HMF)and L-cysteine is intensively investigated by cyclic voltammetry and square wave voltammetry for which,the secondorder rate constant(k_(ec))of the chemical reaction between HMF^(+)and L-cysteine is determined via a 1D homogeneous electrocatalytic reaction model based on finite element simulation.The corresponding k_(ec)(1.1(mol·m^(-3))^(-1)·s^(-1))is further verified by linear sweep voltammograms under the same model.Square wave voltammetry parameters including potential frequency(f),increment(Estep)and amplitude(ESW)have been comprehensively investigated in terms of the voltammetric waveform transition of homogeneous electrocatalytic reaction.Specifically,the effect of potential frequency and increment is in accordance with the potential scan rate in cyclic voltammetry and the increase of pulsed potential amplitude results in a conspicuous split oxidative peaks phenomenon.Moreover,the proposed methodology of k_(ec)prediction is examined by hydroxyethylferrocene(HEF)and L-cysteine.The present work facilitates the understanding of homogeneous electrocatalytic reaction for energy storage purpose,especially in terms of electrochemical kinetics extraction and flow battery design. 展开更多
关键词 Homogeneous electrocatalytic reaction Electrochemical kinetics Square wave voltammetry Finite element modelling Energy storage
下载PDF
Syntheses,Characterization and Crystal Structures of Dithiocarbamate-based Mononuclear Palladium(Ⅱ) Complexes
18
作者 李浩 蒋选丰 于澍燕 《Chinese Journal of Structural Chemistry》 SCIE CAS CSCD 2017年第7期1185-1192,共8页
By employing the dithiocarbamate salt(K(PPDC), where PPDC = 4?-pyridyl-1-piperazine-4-dithiocarbamate) as the functional ligand and di-palladium complexes [(N^N)_2Pd_2(NO_3ˉ)_2](NO3ˉ)2(N^N = 2,2?-bipyridine, bpy; 4,... By employing the dithiocarbamate salt(K(PPDC), where PPDC = 4?-pyridyl-1-piperazine-4-dithiocarbamate) as the functional ligand and di-palladium complexes [(N^N)_2Pd_2(NO_3ˉ)_2](NO3ˉ)2(N^N = 2,2?-bipyridine, bpy; 4,4?-dimethylbipyridine, dmbpy) as corner, two novel single metal complexes with Pd(II) centers have been obtained. These organic-metal complexes were characterized by NMR, ESI-MS, elemental analysis, Uv-vis spectra and single-crystal X-ray diffraction analysis. Compound 1·(PF6)2([(bpy)Pd(PPDC)]·(PF6)2) crystallizes in triclinic, space group P1, a = 8.3968(5), b = 11.5565(7), c = 18.2234(11) ?, α = 97.505(1), β = 91.424(1), γ = 106.146(1)o, C22H24N6S2P2F12 Pd, Mr = 832.93, V = 1680.58(18) ?~3, Z = 2, Dc = 1.646 Mg/m3, μ(MoK α) = 0.863 mm-1, F(000) = 828, the final R = 0.0455 and wR = 0.1390 for 6981 observed reflections with I > 2σ(I). Similarly, compound 2·(PF6)2([(dmbpy)Pd(PPDC)]·(PF6)2) also crystallizes in triclinic, space group P1, a = 13.9467(3), b = 14.8390(2), c = 17.0632(3) ?, α = 81.8680(10), β = 87.051(2), γ = 83.4590(10)o, C_(22)H_(25)N_5S_2P_2F_(12)Pd, M_r = 819.93, V = 3470.81(11) ?~3, Z = 4, D_c = 1.569 Mg/m^3, μ(CuK α) = 7.115 mm^(-1), F(000) = 1632, the final R = 0.0606 and w R = 0.1637 for 12835 observed reflections with I > 2σ(I). Crystallography reveals that each metal center coordinates with two N atoms from bpy and two S atoms from PPDC in the square coordination mode. In the crystal structure of complex 1, a weak Pd···Pd interaction can be observed. Interestingly, it was also found that the mononuclear moieties of complex 2 could be packed into a 3-D porous framework via multiple intermolecular C–F···H hydrogen-boding interactions which extended in the a, b, and c axes with PF_6ˉ anions frozen inside. 展开更多
关键词 二硫代氨基甲酸盐 钯配合物 晶体结构 有机金属配合物 X-射线单晶衍射 紫外-可见光谱 合成 单核
下载PDF
Ethylene purification in a metal–organic framework over a wide temperature range via pore confinement
19
作者 Xue-Qian Wu Peng-Dan Zhang +4 位作者 Xin Zhang Jing-Hao Liu Tao He Jiamei Yu Jian-Rong Li 《Green Energy & Environment》 SCIE EI CAS CSCD 2023年第6期1703-1710,共8页
The separation of C2H4from C_(2)H_(6)/C_(2)H_(4)mixture is of great importance but difficult and energy intensive. Adsorptive separation provides an alternative approach to ameliorate this situation. Here, we report a... The separation of C2H4from C_(2)H_(6)/C_(2)H_(4)mixture is of great importance but difficult and energy intensive. Adsorptive separation provides an alternative approach to ameliorate this situation. Here, we report a microporous metal–organic framework(MOF) BUT-315-a as a C_(2)H_(6)-selective adsorbent for the separation of C2H6/C2H4gas mixture. BUT-315-a combines good IAST selectivity of 2.35 with high C_(2)H_(6)uptake of 97.5 cm^(3)g^(-1), giving superior high separation potential ΔQ(2226 mmol L^(-1)) for equimolar C_(2)H_(6)/C_(2)H_(4) at 298 K. Impressively, such excellent performance can be preserved at higher temperatures of 313 and 323 K to accommodate industrial conditions. Efficient dynamic separation performance of BUT-315-a has been demonstrated by column breakthrough experiments under varied temperatures and gas ratios. Theoretical calculations further reveal multiple synergistic interactions between C_(2)H_(6) and the framework. This work highlights a new benchmark material for C_(2)H_(6)/C_(2)H_(4)separation and provides guidance for designing adsorbent for separation applications. 展开更多
关键词 Metal–organic framework Adsorptive separation Ethylene purification Temperature adaptability Pore confinement
下载PDF
Fluorescence Turn-On/Off Responses of In(Ⅲ)-MOF to Short-Chain Perfluorocarboxylic Acids
20
作者 Jie Lv Yabo Xie +1 位作者 Lin-Hua Xie Jian-Rong Li 《Transactions of Tianjin University》 EI CAS 2023年第3期216-224,共9页
Short-chain perfluorocarboxylic acids(PFCAs) are a class of persistent organic pollutants that are widely used as substitutes for long-chain PFCAs. However, they also pose a non-negligible risk to ecosystems. In this ... Short-chain perfluorocarboxylic acids(PFCAs) are a class of persistent organic pollutants that are widely used as substitutes for long-chain PFCAs. However, they also pose a non-negligible risk to ecosystems. In this study, we demonstrated that a fluorescent metal–organic framework(MOF)(named V-101) constructed from In^(3+)and an aromatic-rich tetratopic carboxylate ligand 5-[2,6-bis(4-carboxyphenyl) pyridin-4-yl] isophthalic acid(H4BCPIA) exhibited highly efficient turn-off and turn-on fluorescence responses toward five short-chain PFCAs in water and methanol, respectively. The limits of detection of V-101 toward five short-chain PFCAs are down to μg/L level, and it showed good anti-interference abilities toward short-chain PFCAs in the presence of common metal ions. The major mechanisms associated with fluorescence responses were molecular collisions and interactions between V-101 and short-chain PFCAs. This work demonstrates that the structure variety of MOFs imparts them with the potential of MOFs in the detection of short-chain PFCAs for pollution control. 展开更多
关键词 Perfl uorocarboxylic acids Fluorescent detection Metal–organic framework(MOF)
下载PDF
上一页 1 2 5 下一页 到第
使用帮助 返回顶部