γδT cells play important roles in innate immunity as the first-line of defense against infectious diseases. Human immunodeficiency virus (HIV) infection disrupts the balance between Vδ1 T cells and Vδ2 T cells a...γδT cells play important roles in innate immunity as the first-line of defense against infectious diseases. Human immunodeficiency virus (HIV) infection disrupts the balance between Vδ1 T cells and Vδ2 T cells and causes dysfunction among γδ T cells. However, the biological mechanisms and clinical consequences of this disruption require further investigation. In this study, we performed a comprehensive analysis of phenotype and function of memory γδ T cells in cohorts of Chinese individuals with HIV infection. We found a dynamic change in memory Vδ2 γδ T cells, skewed toward an activated and terminally differentiated effector memory phenotype TEMRA Vδ2 γδT cell, which may account for the dysfunction of Vδ2 γδT cells in HIV disease. In addition, we found that IL-17-producing γδ T cells were significantly increased in HIV-infected patients with fast disease progression and positively correlated with HLA-DR+ γδ T cells and CD38+HLA-DR+ γδ T cells. This suggests the IL-17 signaling pathway is involved in γδ T-cell activation and HIV pathogenesis. Our findings provide novel insights into the role of Vδ2 T cells during HIV pathogenesis and represent a sound basis on which to consider immune therapies with these cells.展开更多
文摘γδT cells play important roles in innate immunity as the first-line of defense against infectious diseases. Human immunodeficiency virus (HIV) infection disrupts the balance between Vδ1 T cells and Vδ2 T cells and causes dysfunction among γδ T cells. However, the biological mechanisms and clinical consequences of this disruption require further investigation. In this study, we performed a comprehensive analysis of phenotype and function of memory γδ T cells in cohorts of Chinese individuals with HIV infection. We found a dynamic change in memory Vδ2 γδ T cells, skewed toward an activated and terminally differentiated effector memory phenotype TEMRA Vδ2 γδT cell, which may account for the dysfunction of Vδ2 γδT cells in HIV disease. In addition, we found that IL-17-producing γδ T cells were significantly increased in HIV-infected patients with fast disease progression and positively correlated with HLA-DR+ γδ T cells and CD38+HLA-DR+ γδ T cells. This suggests the IL-17 signaling pathway is involved in γδ T-cell activation and HIV pathogenesis. Our findings provide novel insights into the role of Vδ2 T cells during HIV pathogenesis and represent a sound basis on which to consider immune therapies with these cells.