期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Effect of Mn doping on mechanical properties and electronic structure of WCoB ternary boride by first-principles calculations
1
作者 Tong Zhang Hai-Qing Yin +2 位作者 Cong Zhang Xuan-Hui Qu Qing-Jun Zheng 《Chinese Physics B》 SCIE EI CAS CSCD 2018年第10期537-547,共11页
The first-principles calculations are performed to investigate the structural, mechanical property, hardness, and electronic structure of WCoB with 0, 8.33, 16.67, 25, and 33.33 at.% Mn doping content and W_2 CoB_2 wi... The first-principles calculations are performed to investigate the structural, mechanical property, hardness, and electronic structure of WCoB with 0, 8.33, 16.67, 25, and 33.33 at.% Mn doping content and W_2 CoB_2 with 0, 10, and 20 at.%Mn doping content. The cohesive energy and formation energy indicate that all the structures can retain good structural stability. According to the calculated elastic constants, Mn is responsible for the increase of ductility and Poisson's ratio and the decrease of Young's modulus, shear modulus, and bulk modulus. By using the population analysis and mechanical properties, the hardness is characterized through using the five hardness models and is found to decrease with the Mn doping content increasing. The calculated electronic structure indicates that the formation of a B–Mn covalent bond and a W–Mn metallic bond contribute to the decreasing of the mechanical properties. 展开更多
关键词 Mn doping WCoB electronic structure first-principles calculations
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部