A case study was performed in Beijing in 2000 to observe concentrations of SO2 and NOx in the atmosphere and to evaluate their radiative impact. It was found that the concentrations of these gases are usually high in ...A case study was performed in Beijing in 2000 to observe concentrations of SO2 and NOx in the atmosphere and to evaluate their radiative impact. It was found that the concentrations of these gases are usually high in the morning due to a temperature inversion in the boundary layer. The average concentrations obtained from the observations are much higher than those used in the McClatchey reference atmosphere. The radiative impacts of these gases are calculated using a line-by-line radiative transfer model. The results show that the radiative forcing at the surface due to SO2 is 0.0576 W m^-2 and that due to NOx is 0.0032 W m^-2. These figures are almost compatible with that due to CFC11.展开更多
This study quantified the regional damages resulting from temperature and sea level changes using the Regional Integrated of Climate and Economy(RICE)model,as well as the effects of enabling and disabling the climate ...This study quantified the regional damages resulting from temperature and sea level changes using the Regional Integrated of Climate and Economy(RICE)model,as well as the effects of enabling and disabling the climate impact module on future emission pathways.Results highlight varied damages depending on regional economic development and locations.Specifically,China and Africa could suffer the most serious comprehensive damages caused by temperature change and sea level rise,followed by India,other developing Asian countries(OthAsia),and other high-income countries(OHI).The comprehensive damage fractions for China and Africa are projected to be 15.1%and 12.5%of gross domestic product(GDP)in 2195,with corresponding cumulative damages of 124.0 trillion and 87.3 trillion United States dollars(USD)from 2005 to 2195,respectively.Meanwhile,the comprehensive damage fractions in Japan,Eurasia,and Russia are smaller and projected to be lower than 5.6%of GDP in 2195,with cumulative damages of 6.8 trillion,4.2 trillion,and 3.3 trillion USD,respectively.Additionally,coastal regions like Africa,the European Union(EU),and OHI show comparable damages for sea level rise and temperature change.In China,however,sea level-induced damages are projected to exceed those from temperature changes.Moreover,this study indicates that switching the damage modules on or off affects the regional and global emission trajectories,but the magnitude is relatively small.By 2195,global emissions under the experiments with all of the damage modules switched off,only the sea level damage module switched on,and only the temperature damage module switched on,were 3.5%,2.3%and 1.2%higher than those with all of the damage modules switched on,respectively.展开更多
By use of the two-layer adiabatic globe spectral model and the zonally averaged climatic data of winter season as initial values, 10-day integrations are carried out based on three kinds of model topography (i.e., (1)...By use of the two-layer adiabatic globe spectral model and the zonally averaged climatic data of winter season as initial values, 10-day integrations are carried out based on three kinds of model topography (i.e., (1) the averaged topography; (2) the envelope topography; (3) the modified envelope topography). The results show that the orography of the Northern Hemisphere plays an important role in the simulation of large-scale weather patterns in winter season. The simulation based on the envelope topography developed by Wallace et al. has some improvements in the Rocky Mountains area. But this scheme causes very serious horizontal expansion around the Tibetan Plateau (hereafter referred to as the TV). A modified envelope topography scheme has been worked out that increases the slope of the TP by decreasing the horizontal expansion while keeping the maximum altitude. The results show some improvements of the scheme around the TP. By analysis of the mechanical effects of the large-scale orography on the currents, the different forcings of the air flow over and around the TP and the Rocky Mountain (the RM) are investigated.展开更多
As a basic property of cloud,accurate identification of cloud type is useful in forecasting the evolution of landfalling typhoons.Millimeter-wave cloud radar is an important means of identifying cloud type.Here,we dev...As a basic property of cloud,accurate identification of cloud type is useful in forecasting the evolution of landfalling typhoons.Millimeter-wave cloud radar is an important means of identifying cloud type.Here,we develop a fuzzy logic algorithm that depends on radar range-height-indicator(RHI)data and takes into account the fundamental physical features of different cloud types.The algorithm is applied to a ground-based Ka-band millimeter-wave cloud radar.The input parameters of the algorithm include average reflectivity factor intensity,ellipse long axis orientation,cloud base height,cloud thickness,presence/absence of precipitation,ratio of horizontal extent to vertical extent,maximum echo intensity,and standard variance of intensities.The identified cloud types are stratus(St),stratocumulus(Sc),cumulus(Cu),cumulonimbus(Cb),nimbostratus(Ns),altostratus(As),altocumulus(Ac)and high cloud.The cloud types identified using the algorithm are in good agreement with those identified by a human observer.As a case study,the algorithm was applied to typhoon Khanun(1720),which made landfall in south-eastern China in October 2017.Sequential identification results from the algorithm clearly reflected changes in cloud type and provided indicative information for forecasting of the typhoon.展开更多
基金This work was supported by the project of"Research on the Supporting Technology of Atmospheric Environment for the Sustainable Urban Planning"from China Rural Technology Development Center,Beijing Natural Science Foundation(No.8051002)National Natural Science Foundation of China(No.40505002).
文摘A case study was performed in Beijing in 2000 to observe concentrations of SO2 and NOx in the atmosphere and to evaluate their radiative impact. It was found that the concentrations of these gases are usually high in the morning due to a temperature inversion in the boundary layer. The average concentrations obtained from the observations are much higher than those used in the McClatchey reference atmosphere. The radiative impacts of these gases are calculated using a line-by-line radiative transfer model. The results show that the radiative forcing at the surface due to SO2 is 0.0576 W m^-2 and that due to NOx is 0.0032 W m^-2. These figures are almost compatible with that due to CFC11.
基金funded by the National Natu-ral Science Foundation of China(Grant No.42075044 and No.41975112)a project supported by the Innovation Group Project of the Southern Marine Science and Engineering Guangdong Laboratory(Zhuhai)(Grant No.311022006).
文摘This study quantified the regional damages resulting from temperature and sea level changes using the Regional Integrated of Climate and Economy(RICE)model,as well as the effects of enabling and disabling the climate impact module on future emission pathways.Results highlight varied damages depending on regional economic development and locations.Specifically,China and Africa could suffer the most serious comprehensive damages caused by temperature change and sea level rise,followed by India,other developing Asian countries(OthAsia),and other high-income countries(OHI).The comprehensive damage fractions for China and Africa are projected to be 15.1%and 12.5%of gross domestic product(GDP)in 2195,with corresponding cumulative damages of 124.0 trillion and 87.3 trillion United States dollars(USD)from 2005 to 2195,respectively.Meanwhile,the comprehensive damage fractions in Japan,Eurasia,and Russia are smaller and projected to be lower than 5.6%of GDP in 2195,with cumulative damages of 6.8 trillion,4.2 trillion,and 3.3 trillion USD,respectively.Additionally,coastal regions like Africa,the European Union(EU),and OHI show comparable damages for sea level rise and temperature change.In China,however,sea level-induced damages are projected to exceed those from temperature changes.Moreover,this study indicates that switching the damage modules on or off affects the regional and global emission trajectories,but the magnitude is relatively small.By 2195,global emissions under the experiments with all of the damage modules switched off,only the sea level damage module switched on,and only the temperature damage module switched on,were 3.5%,2.3%and 1.2%higher than those with all of the damage modules switched on,respectively.
文摘By use of the two-layer adiabatic globe spectral model and the zonally averaged climatic data of winter season as initial values, 10-day integrations are carried out based on three kinds of model topography (i.e., (1) the averaged topography; (2) the envelope topography; (3) the modified envelope topography). The results show that the orography of the Northern Hemisphere plays an important role in the simulation of large-scale weather patterns in winter season. The simulation based on the envelope topography developed by Wallace et al. has some improvements in the Rocky Mountains area. But this scheme causes very serious horizontal expansion around the Tibetan Plateau (hereafter referred to as the TV). A modified envelope topography scheme has been worked out that increases the slope of the TP by decreasing the horizontal expansion while keeping the maximum altitude. The results show some improvements of the scheme around the TP. By analysis of the mechanical effects of the large-scale orography on the currents, the different forcings of the air flow over and around the TP and the Rocky Mountain (the RM) are investigated.
基金This work was supported by the National Natural Science Foundation of China(Grant No.41675029)the National Basic Research Program of China(No.2013CB430102).
文摘As a basic property of cloud,accurate identification of cloud type is useful in forecasting the evolution of landfalling typhoons.Millimeter-wave cloud radar is an important means of identifying cloud type.Here,we develop a fuzzy logic algorithm that depends on radar range-height-indicator(RHI)data and takes into account the fundamental physical features of different cloud types.The algorithm is applied to a ground-based Ka-band millimeter-wave cloud radar.The input parameters of the algorithm include average reflectivity factor intensity,ellipse long axis orientation,cloud base height,cloud thickness,presence/absence of precipitation,ratio of horizontal extent to vertical extent,maximum echo intensity,and standard variance of intensities.The identified cloud types are stratus(St),stratocumulus(Sc),cumulus(Cu),cumulonimbus(Cb),nimbostratus(Ns),altostratus(As),altocumulus(Ac)and high cloud.The cloud types identified using the algorithm are in good agreement with those identified by a human observer.As a case study,the algorithm was applied to typhoon Khanun(1720),which made landfall in south-eastern China in October 2017.Sequential identification results from the algorithm clearly reflected changes in cloud type and provided indicative information for forecasting of the typhoon.