Geothermal energy has gained wide attention as a renewable alternative for mitigating greenhouse gas emissions.The advancements in enhanced geothermal system technology have enabled the exploitation of previously inac...Geothermal energy has gained wide attention as a renewable alternative for mitigating greenhouse gas emissions.The advancements in enhanced geothermal system technology have enabled the exploitation of previously inaccessible geothermal resources.However,the extraction of geothermal energy from deep reservoirs poses many challenges due to high‐temperature and high‐geostress conditions.These factors can significantly impact the surrounding rock and its fracture formation.A comprehensive understanding of the thermal–hydraulic–mechanical(THM)coupling effect is crucial to the safe and efficient exploitation of geothermal resources.This study presented a THM coupling numerical model for the geothermal reservoir of the Yangbajing geothermal system.This proposed model investigated the geothermal exploitation performance and the stress distribution within the reservoir under various combinations of geothermal wells and mass flow rates.The geothermal system performance was evaluated by the criteria of outlet temperature and geothermal productivity.The results indicate that the longer distance between wells can increase the outlet temperature of production wells and improve extraction efficiency in the short term.In contrast,the shorter distance between wells can reduce the heat exchange area and thus mitigate the impact on the reservoir stress.A larger mass flow rate is conducive to the production capacity enhancement of the geothermal system and,in turn causes a wider range of stress disturbance.These findings provide valuable insights into the optimization of geothermal energy extraction while considering reservoir safety and long‐term sustainability.This study deepens the understanding of the THM coupling effects in geothermal systems and provides an efficient and environmentally friendly strategy for a geothermal energy system.展开更多
For the project of pipe jacking in cohesionless soil,it is key to determine the vertical load on jacked pipe so as to predict the jacking force accurately.In this paper,a new parabolic soil arching model was proposed ...For the project of pipe jacking in cohesionless soil,it is key to determine the vertical load on jacked pipe so as to predict the jacking force accurately.In this paper,a new parabolic soil arching model was proposed to calculate the vertical load on jacked pipe.This proposed analytical model was composed of parabolic soil arching zone,parabola-typed collapse zone and friction arch zone.Combined with existing literature,the key parameters(i.e.,height of parabolic soil arching,horizontal pressure coefficient and width and height of friction arch)were determined.In addition,considering that the trajectory of major stress is parabola,the formula of horizontal pressure coefficient was deduced in the friction arch.The parabolic soil arching zone is assumed as a three-hinged arch with reasonable arch axis,and the formula of load transfer was derived considering the transition effect of parabolic soil arching.The results of experiment,theoretical models and numerical model were adopted to verify the proposed analytical model.Finally,the influence of the key parameters on the vertical load on jacked pipe were also discussed in detail.This work provides a meaningful reference for evaluating the vertical load on jacked pipe for design of pipe jacking.展开更多
基金supported by the financial support from the National Natural Science Foundation of China(52204084)Project funded by the China Postdoctoral Science Foundation(2021M700388).
文摘Geothermal energy has gained wide attention as a renewable alternative for mitigating greenhouse gas emissions.The advancements in enhanced geothermal system technology have enabled the exploitation of previously inaccessible geothermal resources.However,the extraction of geothermal energy from deep reservoirs poses many challenges due to high‐temperature and high‐geostress conditions.These factors can significantly impact the surrounding rock and its fracture formation.A comprehensive understanding of the thermal–hydraulic–mechanical(THM)coupling effect is crucial to the safe and efficient exploitation of geothermal resources.This study presented a THM coupling numerical model for the geothermal reservoir of the Yangbajing geothermal system.This proposed model investigated the geothermal exploitation performance and the stress distribution within the reservoir under various combinations of geothermal wells and mass flow rates.The geothermal system performance was evaluated by the criteria of outlet temperature and geothermal productivity.The results indicate that the longer distance between wells can increase the outlet temperature of production wells and improve extraction efficiency in the short term.In contrast,the shorter distance between wells can reduce the heat exchange area and thus mitigate the impact on the reservoir stress.A larger mass flow rate is conducive to the production capacity enhancement of the geothermal system and,in turn causes a wider range of stress disturbance.These findings provide valuable insights into the optimization of geothermal energy extraction while considering reservoir safety and long‐term sustainability.This study deepens the understanding of the THM coupling effects in geothermal systems and provides an efficient and environmentally friendly strategy for a geothermal energy system.
基金supported by the National Key Research and Development Program of China(Grant No.2019YFC1509704)Young Teachers’Research Ability Improvement Plan of Beijing University of Civil Engineering and Architecture(Grant No.X23005)Beijing Municipal Engineering Institute.
文摘For the project of pipe jacking in cohesionless soil,it is key to determine the vertical load on jacked pipe so as to predict the jacking force accurately.In this paper,a new parabolic soil arching model was proposed to calculate the vertical load on jacked pipe.This proposed analytical model was composed of parabolic soil arching zone,parabola-typed collapse zone and friction arch zone.Combined with existing literature,the key parameters(i.e.,height of parabolic soil arching,horizontal pressure coefficient and width and height of friction arch)were determined.In addition,considering that the trajectory of major stress is parabola,the formula of horizontal pressure coefficient was deduced in the friction arch.The parabolic soil arching zone is assumed as a three-hinged arch with reasonable arch axis,and the formula of load transfer was derived considering the transition effect of parabolic soil arching.The results of experiment,theoretical models and numerical model were adopted to verify the proposed analytical model.Finally,the influence of the key parameters on the vertical load on jacked pipe were also discussed in detail.This work provides a meaningful reference for evaluating the vertical load on jacked pipe for design of pipe jacking.