As a typical transportation tool in the intelligent manufacturing system,Automatic Guided Vehicle(AGV)plays an indispensable role in the automatic production process of the workshop.Therefore,integrating AGV resources...As a typical transportation tool in the intelligent manufacturing system,Automatic Guided Vehicle(AGV)plays an indispensable role in the automatic production process of the workshop.Therefore,integrating AGV resources into production scheduling has become a research hotspot.For the scheduling problem of the flexible job shop adopting segmented AGV,a dual-resource scheduling optimization mathematical model of machine tools and AGVs is established by minimizing the maximum completion time as the objective function,and an improved genetic algorithmis designed to solve the problem in this study.The algorithmdesigns a two-layer codingmethod based on process coding and machine tool coding and embeds the task allocation of AGV into the decoding process to realize the real dual resource integrated scheduling.When initializing the population,three strategies are designed to ensure the diversity of the population.In order to improve the local search ability and the quality of the solution of the genetic algorithm,three neighborhood structures are designed for variable neighborhood search.The superiority of the improved genetic algorithmand the influence of the location and number of transfer stations on scheduling results are verified in two cases.展开更多
Through taking uncertain mechanical parameters of composites into consideration,this paper carries out uncertain modal analysis for an unmanned aircraft landing gear.By describing correlated multi-dimensional mechanic...Through taking uncertain mechanical parameters of composites into consideration,this paper carries out uncertain modal analysis for an unmanned aircraft landing gear.By describing correlated multi-dimensional mechanical parameters as a convex polyhedral model,the modal analysis problem of a composite landing gear is transferred into a linear fractional programming(LFR)eigenvalue solution problem.As a consequent,the extreme-point algorithm is proposed to estimate lower and upper bounds of eigenvalues,namely the exact results of eigenvalues can be easily obtained at the extreme-point locations of the convex polyhedral model.The simulation results show that the proposed model and algorithm can play an important role in the eigenvalue solution problem and possess valuable engineering significance.It will be a powerful and effective tool for further vibration analysis for the landing gear.展开更多
文摘As a typical transportation tool in the intelligent manufacturing system,Automatic Guided Vehicle(AGV)plays an indispensable role in the automatic production process of the workshop.Therefore,integrating AGV resources into production scheduling has become a research hotspot.For the scheduling problem of the flexible job shop adopting segmented AGV,a dual-resource scheduling optimization mathematical model of machine tools and AGVs is established by minimizing the maximum completion time as the objective function,and an improved genetic algorithmis designed to solve the problem in this study.The algorithmdesigns a two-layer codingmethod based on process coding and machine tool coding and embeds the task allocation of AGV into the decoding process to realize the real dual resource integrated scheduling.When initializing the population,three strategies are designed to ensure the diversity of the population.In order to improve the local search ability and the quality of the solution of the genetic algorithm,three neighborhood structures are designed for variable neighborhood search.The superiority of the improved genetic algorithmand the influence of the location and number of transfer stations on scheduling results are verified in two cases.
基金supported by the National Nature Science Foundation of China(No.51805503)the Beijing Natural Science Foundation(No.3202035)。
文摘Through taking uncertain mechanical parameters of composites into consideration,this paper carries out uncertain modal analysis for an unmanned aircraft landing gear.By describing correlated multi-dimensional mechanical parameters as a convex polyhedral model,the modal analysis problem of a composite landing gear is transferred into a linear fractional programming(LFR)eigenvalue solution problem.As a consequent,the extreme-point algorithm is proposed to estimate lower and upper bounds of eigenvalues,namely the exact results of eigenvalues can be easily obtained at the extreme-point locations of the convex polyhedral model.The simulation results show that the proposed model and algorithm can play an important role in the eigenvalue solution problem and possess valuable engineering significance.It will be a powerful and effective tool for further vibration analysis for the landing gear.