A GaInNAs/GaAs multiple quantum well (MQW) resonant-cavity enhanced photodetector (RCE-PD) operated at a wavelength of 1.3μm with the full width at half maximum of 4nm has been demonstrated. The GaInNAs RCE-PD was gr...A GaInNAs/GaAs multiple quantum well (MQW) resonant-cavity enhanced photodetector (RCE-PD) operated at a wavelength of 1.3μm with the full width at half maximum of 4nm has been demonstrated. The GaInNAs RCE-PD was grown by molecular beam epitaxy using a homemade ion-removed dc plasma cell as a nitrogen source. GaInNAs/GaAs MQW shows a strong exciton peak at room temperature, which is very beneficial for applications in long-wavelength absorption devices. For a 100μm diameter RCE-PD, the dark current is 20 and 32 pA at biases of 0 and 6 V, respectively, and the breakdown voltage is -18 V. The measured 3 dB bandwidth is 308 MHz, which is limited by the resistance of p-type distributed Bragg reflector mirror. The tunable wavelength in a range of 18nm with the angle of incident light was observed.展开更多
基金Supported by the Major State Basic Research Program under Grant No.G2000036603the National Natural Science Foundation of China under Grant Nos.69896260,69988005 and 69976007。
文摘A GaInNAs/GaAs multiple quantum well (MQW) resonant-cavity enhanced photodetector (RCE-PD) operated at a wavelength of 1.3μm with the full width at half maximum of 4nm has been demonstrated. The GaInNAs RCE-PD was grown by molecular beam epitaxy using a homemade ion-removed dc plasma cell as a nitrogen source. GaInNAs/GaAs MQW shows a strong exciton peak at room temperature, which is very beneficial for applications in long-wavelength absorption devices. For a 100μm diameter RCE-PD, the dark current is 20 and 32 pA at biases of 0 and 6 V, respectively, and the breakdown voltage is -18 V. The measured 3 dB bandwidth is 308 MHz, which is limited by the resistance of p-type distributed Bragg reflector mirror. The tunable wavelength in a range of 18nm with the angle of incident light was observed.