Due to high spectral efficiency and power efficiency, the continuous phase modulation(CPM) technique with constant envelop is widely used in range telemetry. How to improve the bit error rate(BER) performance of CPM a...Due to high spectral efficiency and power efficiency, the continuous phase modulation(CPM) technique with constant envelop is widely used in range telemetry. How to improve the bit error rate(BER) performance of CPM and keep a reasonable computational complexity is the key of the entire telemetry system and the focus of research and engineering design. In this paper, a reduced-state noncoherent maximum likelihood sequence detection(MLSD) method for CPM is proposed. In the proposed method, the criterion of noncoherent MLSD is derived for CPM when the carrier phase is unknown. A novel Viterbi algorithm(VA) with modified state vector is designed to simplify the implementation of noncoherent MLSD. Both analysis and numerical results show that the proposed method reduces the computational complexity significantly and does not need accurate carrier phase recovery, which overcomes the shortage of traditional MLSD method. Additionally, the proposed method exceeds the traditional MLSD method when carrier phase deviation exists.展开更多
基金supported by the Fundamental Research Funds for the Central Universities ( BLX201623 )the National Natural Science Foundation of China ( 31700479)。
文摘Due to high spectral efficiency and power efficiency, the continuous phase modulation(CPM) technique with constant envelop is widely used in range telemetry. How to improve the bit error rate(BER) performance of CPM and keep a reasonable computational complexity is the key of the entire telemetry system and the focus of research and engineering design. In this paper, a reduced-state noncoherent maximum likelihood sequence detection(MLSD) method for CPM is proposed. In the proposed method, the criterion of noncoherent MLSD is derived for CPM when the carrier phase is unknown. A novel Viterbi algorithm(VA) with modified state vector is designed to simplify the implementation of noncoherent MLSD. Both analysis and numerical results show that the proposed method reduces the computational complexity significantly and does not need accurate carrier phase recovery, which overcomes the shortage of traditional MLSD method. Additionally, the proposed method exceeds the traditional MLSD method when carrier phase deviation exists.