To automatically obtain a machining area in numerical control (NC) programming, a data model of generalized pocket is established by analyzing aircraft integral panel characteristics, and a feature recognition appro...To automatically obtain a machining area in numerical control (NC) programming, a data model of generalized pocket is established by analyzing aircraft integral panel characteristics, and a feature recognition approach is proposed. First, by reference to the practical slice-machining process of an aircraft integral panel, both the part and the blank are sliced in the Z-axis direction; hence a feature profile is created according to the slicing planes and the contours are formed by the intersection of the slicing planes with the part and its blank. Second, the auxiliary features of the generalized pocket are also determined based on the face type and the position, to correct the profile of the pocket. Finally, the generalized pocket feature relationship tree is constructed by matching the vertical relationships among the features. Machining feature information produced by using this method can be directly used to calculate the cutter path. The validity and practicability of the method is verified by NC programming for aircraft panels.展开更多
文摘To automatically obtain a machining area in numerical control (NC) programming, a data model of generalized pocket is established by analyzing aircraft integral panel characteristics, and a feature recognition approach is proposed. First, by reference to the practical slice-machining process of an aircraft integral panel, both the part and the blank are sliced in the Z-axis direction; hence a feature profile is created according to the slicing planes and the contours are formed by the intersection of the slicing planes with the part and its blank. Second, the auxiliary features of the generalized pocket are also determined based on the face type and the position, to correct the profile of the pocket. Finally, the generalized pocket feature relationship tree is constructed by matching the vertical relationships among the features. Machining feature information produced by using this method can be directly used to calculate the cutter path. The validity and practicability of the method is verified by NC programming for aircraft panels.