We construct a system of magnetic tweezers and apply it to study the interaction between histones and DNA. The condensation of DNA by purified histones at low ionic strengths is directly monitored by recording the len...We construct a system of magnetic tweezers and apply it to study the interaction between histones and DNA. The condensation of DNA by purified histones at low ionic strengths is directly monitored by recording the length of the DNA as a function of elapsed time. It is found that DNA condensates in a dynamic manner. The binding of hist, ones to DNA is energetically favoured, but the ten,sion applied on DNA tends to unravel the DNA-histone complex, The competition between the two processes determiners the rate of the DNA condensation.展开更多
We propose a method to measure the carrier-envelop phase (CEP) and the intensity of a few-cycle pulse by controlling the non-sequentiai double ionization (NSDI) process. By using an additional static electric fiel...We propose a method to measure the carrier-envelop phase (CEP) and the intensity of a few-cycle pulse by controlling the non-sequentiai double ionization (NSDI) process. By using an additional static electric field, we can change the momentum distribution of the double-charged ions parallel to the laser polarization from an asymmetrical double-hump structure to a nearly symmetrical one. It is found that the ratio between the strength of the static electric field and that of the laser field is sensitive to the CEP but robust against the intensity fluctuation. Therefore we can determine the OEP of a few-cycle pulse precisely by measuring the static electric field. Fhrthermore, if the CEP of the few-cycle pulse is fixed at a certain value, we can also calibrate the intensity of the laser pulse by the static electric field.展开更多
基金Supported by the National Natural Science Foundation of China under Grant No 10334100. The authors acknowledge the help of Professor .J. Yan of the National University of Singapore in setting up the instrument.
文摘We construct a system of magnetic tweezers and apply it to study the interaction between histones and DNA. The condensation of DNA by purified histones at low ionic strengths is directly monitored by recording the length of the DNA as a function of elapsed time. It is found that DNA condensates in a dynamic manner. The binding of hist, ones to DNA is energetically favoured, but the ten,sion applied on DNA tends to unravel the DNA-histone complex, The competition between the two processes determiners the rate of the DNA condensation.
基金Supported by the National Natural Science Foundation of China under Grant Nos 10634020, 10521002, 60778009, 10574019 and 10725521, the National Basic Research Program of China under Grant Nos 2006CB806000 and 2007CB815101. ZCY was supported by NSERC of Canada. JC and JL were supported by CAEP Foundation under Grant No 2006z0202.
文摘We propose a method to measure the carrier-envelop phase (CEP) and the intensity of a few-cycle pulse by controlling the non-sequentiai double ionization (NSDI) process. By using an additional static electric field, we can change the momentum distribution of the double-charged ions parallel to the laser polarization from an asymmetrical double-hump structure to a nearly symmetrical one. It is found that the ratio between the strength of the static electric field and that of the laser field is sensitive to the CEP but robust against the intensity fluctuation. Therefore we can determine the OEP of a few-cycle pulse precisely by measuring the static electric field. Fhrthermore, if the CEP of the few-cycle pulse is fixed at a certain value, we can also calibrate the intensity of the laser pulse by the static electric field.