The substantial competition among the news industries puts editors under the pressure of posting news articleswhich are likely to gain more user attention. Anticipating the popularity of news articles can help the edi...The substantial competition among the news industries puts editors under the pressure of posting news articleswhich are likely to gain more user attention. Anticipating the popularity of news articles can help the editorial teamsin making decisions about posting a news article. Article similarity extracted from the articles posted within a smallperiod of time is found to be a useful feature in existing popularity prediction approaches. This work proposesa new approach to estimate the popularity of news articles by adding semantics in the article similarity basedapproach of popularity estimation. A semantically enriched model is proposed which estimates news popularity bymeasuring cosine similarity between document embeddings of the news articles. Word2vec model has been used togenerate distributed representations of the news content. In this work, we define popularity as the number of timesa news article is posted on different websites. We collect data from different websites that post news concerning thedomain of cybersecurity and estimate the popularity of cybersecurity news. The proposed approach is comparedwith different models and it is shown that it outperforms the other models.展开更多
基金This research was supported by Korea Institute for Advancement of Technology(KIAT)grant funded by the Korea Government(MOTIE)(P0012724,The Competency Development Program for Industry Specialist)and the Soonchunhyang University Research Fund.
文摘The substantial competition among the news industries puts editors under the pressure of posting news articleswhich are likely to gain more user attention. Anticipating the popularity of news articles can help the editorial teamsin making decisions about posting a news article. Article similarity extracted from the articles posted within a smallperiod of time is found to be a useful feature in existing popularity prediction approaches. This work proposesa new approach to estimate the popularity of news articles by adding semantics in the article similarity basedapproach of popularity estimation. A semantically enriched model is proposed which estimates news popularity bymeasuring cosine similarity between document embeddings of the news articles. Word2vec model has been used togenerate distributed representations of the news content. In this work, we define popularity as the number of timesa news article is posted on different websites. We collect data from different websites that post news concerning thedomain of cybersecurity and estimate the popularity of cybersecurity news. The proposed approach is comparedwith different models and it is shown that it outperforms the other models.