期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
An Automated System to Predict Popular Cybersecurity News Using Document Embeddings
1
作者 Ramsha Saeed Saddaf Rubab +5 位作者 Sara Asif Malik M.Khan Saeed Murtaza Seifedine Kadry Yunyoung Nam Muhammad Attique Khan 《Computer Modeling in Engineering & Sciences》 SCIE EI 2021年第5期533-547,共15页
The substantial competition among the news industries puts editors under the pressure of posting news articleswhich are likely to gain more user attention. Anticipating the popularity of news articles can help the edi... The substantial competition among the news industries puts editors under the pressure of posting news articleswhich are likely to gain more user attention. Anticipating the popularity of news articles can help the editorial teamsin making decisions about posting a news article. Article similarity extracted from the articles posted within a smallperiod of time is found to be a useful feature in existing popularity prediction approaches. This work proposesa new approach to estimate the popularity of news articles by adding semantics in the article similarity basedapproach of popularity estimation. A semantically enriched model is proposed which estimates news popularity bymeasuring cosine similarity between document embeddings of the news articles. Word2vec model has been used togenerate distributed representations of the news content. In this work, we define popularity as the number of timesa news article is posted on different websites. We collect data from different websites that post news concerning thedomain of cybersecurity and estimate the popularity of cybersecurity news. The proposed approach is comparedwith different models and it is shown that it outperforms the other models. 展开更多
关键词 EMBEDDINGS SEMANTICS cosine similarity POPULARITY word2vec
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部