High-temperature-resistant adhesives are critical materials in the aerospace field.The zirconium-modified aluminum phosphate-based adhesives developed in this work had the advantage of adjustable thermal expansibility...High-temperature-resistant adhesives are critical materials in the aerospace field.The zirconium-modified aluminum phosphate-based adhesives developed in this work had the advantage of adjustable thermal expansibility,achieving a high matching of coefficient of thermal expansion(CTE)with alumina.The introduction of zirconium can significantly improve the thermal stability of the adhesive matrix,and the Zr/Al ratio substantially affects the various reaction processes inside the adhesive,especially the types of zirconium-containing compounds.Most of the zirconium-containing compounds in the A7Z3 adhesive were ZrO2 only when the mass ratio of zirconium hydroxide to aluminum hydroxide was 3:7,which was the key reason why it had the highest CTE.The room-temperature bonding strength of A7Z3 after heat treatment at 1500℃reached 67.2 MPa.After pretreatment at 1500℃,the high-temperature bonding strength of A7Z3 was greater than 50 MPa in the range of(room temperature)RT-1000℃.After 40 thermal cycles between RT and 1500℃,the bonding strength still reached 10 MPa.Physical bonding occurred at temperatures below 1000℃,while chemical bonding dominated above 1000℃based on the generation of Al5BO9 and mullite at the interfaces.展开更多
基金funded by the National Natural Science Foundation of China(No.51802343)the Natural Science Foundation of Tianjin City(No.23JCQNJC00180)+1 种基金the Open Project of National Key Laboratory of Intelligent Manufacturing Equipment and Technology(No.IMETKF2023021)the Tianjin Graduate Research Innovation Project(Aviation Special Project 2021YJSO2S16).
文摘High-temperature-resistant adhesives are critical materials in the aerospace field.The zirconium-modified aluminum phosphate-based adhesives developed in this work had the advantage of adjustable thermal expansibility,achieving a high matching of coefficient of thermal expansion(CTE)with alumina.The introduction of zirconium can significantly improve the thermal stability of the adhesive matrix,and the Zr/Al ratio substantially affects the various reaction processes inside the adhesive,especially the types of zirconium-containing compounds.Most of the zirconium-containing compounds in the A7Z3 adhesive were ZrO2 only when the mass ratio of zirconium hydroxide to aluminum hydroxide was 3:7,which was the key reason why it had the highest CTE.The room-temperature bonding strength of A7Z3 after heat treatment at 1500℃reached 67.2 MPa.After pretreatment at 1500℃,the high-temperature bonding strength of A7Z3 was greater than 50 MPa in the range of(room temperature)RT-1000℃.After 40 thermal cycles between RT and 1500℃,the bonding strength still reached 10 MPa.Physical bonding occurred at temperatures below 1000℃,while chemical bonding dominated above 1000℃based on the generation of Al5BO9 and mullite at the interfaces.