Biochemical Engineering(BCE)discipline had largely developed from fermentation technology studies from 1950s through 1960s when fermentation emerged as the core technology able to address multiple industrial needs ran...Biochemical Engineering(BCE)discipline had largely developed from fermentation technology studies from 1950s through 1960s when fermentation emerged as the core technology able to address multiple industrial needs ranging from health care products such as antibiotics;food products such as single cell proteins,amino acids,organic acids,and vitamins;liquid fuels and chemicals such as ethanol and acetic acid;and industrial enzymes.展开更多
Tackling the problem of poor conductivity and catalytic stability of pristine metal-organic frameworks(MOFs) is crucial to improve their oxygen evolution reaction(OER) performance.Herein,we introduce a novel strategy ...Tackling the problem of poor conductivity and catalytic stability of pristine metal-organic frameworks(MOFs) is crucial to improve their oxygen evolution reaction(OER) performance.Herein,we introduce a novel strategy of dysprosium(Dy) doping,using the unique 4f orbitals of this rare earth element to enhance electrocatalytic activity of MOFs.Our method involves constructing Dy-doped Ni-MOF(Dy@Ni-MOF) nanoneedles on carbon cloth via a Dy-induced valence electronic perturbation approach.Experiments and density functional theory(DFT) calculations reveal that Dy doping can effectively modify the electronic structure of the Ni active centers and foster a strong electronic interaction between Ni and Dy.The resulting benefits include a reduced work function and a closer proximity of the d-band center to the Fermi level,which is conducive to improving electrical conductivity and promoting the adsorption of oxygen-containing intermediates.Furthermore,the Dy@Ni-MOF achieves superhydrophilicity,ensuring effective electrolyte contact and thus accelerating reaction kinetics,Ex-situ and in-situ analysis results manifest Dy_(2)O_(3)/NiOOH as the actual active species.Therefore,Dy@Ni-MOF shows impressive OER performance,significantly surpassing Ni-MOF.Besides,the overall water splitting device with Dy@NiMOF as an anode delivers a low cell voltage of 1.51 V at 10 mA cm^(-2) and demonstrates long-term stability for 100 h,positioning it as a promising substitute for precious metal catalysts.展开更多
Biocatalysis in organic solvents(OSs)has numerous important applications,but native enzymes in OSs often exhibit limited catalytic performance.Herein,we proposed a computation-aided surface charge engineering strategy...Biocatalysis in organic solvents(OSs)has numerous important applications,but native enzymes in OSs often exhibit limited catalytic performance.Herein,we proposed a computation-aided surface charge engineering strategy to improve the catalytic performance of haloalkane dehalogenase DhaA in OSs based on the energetic analysis of substrate binding to the DhaA surface.Several variants with enhanced OS resistance were obtained by replacing negative charged residues on the surface with positive charged residue(Arg).Particularly,a four-substitution variant E16R/E93R/E121R/E257R exhibited the best catalytic performance(five-fold improvement in OS resistance and seven-fold half-life increase in 40%(vol)dimethylsulfoxide).As a result,the overall catalytic performance of the variant could be at least 26 times higher than the wild-type DhaA.Fluorescence spectroscopy and molecular dynamics simulation studies revealed that the residue substitution mainly enhanced OS resistance from four aspects:(a)improved the overall structural stability,(b)increased the hydrophobicity of the local microenvironment around the catalytic triad,(c)enriched the hydrophobic substrate around the enzyme molecule,and(d)lowered the contact frequency between OS molecules and the catalytic triad.Our findings validate that computationaided surface charge engineering is an effective and ingenious rational strategy for tailoring enzyme performance in OSs.展开更多
The issue of opacity within data-driven artificial intelligence(AI)algorithms has become an impediment to these algorithms’extensive utilization,especially within sensitive domains concerning health,safety,and high p...The issue of opacity within data-driven artificial intelligence(AI)algorithms has become an impediment to these algorithms’extensive utilization,especially within sensitive domains concerning health,safety,and high profitability,such as chemical engineering(CE).In order to promote reliable AI utilization in CE,this review discusses the concept of transparency within AI utilizations,which is defined based on both explainable AI(XAI)concepts and key features from within the CE field.This review also highlights the requirements of reliable AI from the aspects of causality(i.e.,the correlations between the predictions and inputs of an AI),explainability(i.e.,the operational rationales of the workflows),and informativeness(i.e.,the mechanistic insights of the investigating systems).Related techniques are evaluated together with state-of-the-art applications to highlight the significance of establishing reliable AI applications in CE.Furthermore,a comprehensive transparency analysis case study is provided as an example to enhance understanding.Overall,this work provides a thorough discussion of this subject matter in a way that—for the first time—is particularly geared toward chemical engineers in order to raise awareness of responsible AI utilization.With this vital missing link,AI is anticipated to serve as a novel and powerful tool that can tremendously aid chemical engineers in solving bottleneck challenges in CE.展开更多
Spinel oxide(NiCo_(2)O_(4))has demonstrated great potential to replace noble metal catalysts for the oxidation reaction of air pollutants.To further boost the oxidation ability of such catalysts,in this study,a facile...Spinel oxide(NiCo_(2)O_(4))has demonstrated great potential to replace noble metal catalysts for the oxidation reaction of air pollutants.To further boost the oxidation ability of such catalysts,in this study,a facile surface-engineering strategy wherein NiCo_(2)O_(4) was treated with different alkali solvents was developed.The obtained catalyst(NiCo_(2)O_(4)-OH)showed a higher surface alkalinity and more surface defects compared to the pristine spinel oxide,including enhanced structural distortion as well as promoted oxygen vacancies.The propane oxidation ability of NiCo_(2)O_(4)-OH was greatly enhanced,with a propane conversion rate that was approximately 6.4 times higher than that of pristine NiCo_(2)O_(4) at a reaction temperature 193℃.This work sets a valuable paradigm for the surface modulation of spinel oxide via alkali treatment to ensure a high-performance oxidation catalyst.展开更多
Recent advancements in the field of musculoskeletaltissue engineering have raised an increasing interest in the regeneration of the anterior cruciate ligament(ACL). It is the aim of this article to review the current ...Recent advancements in the field of musculoskeletaltissue engineering have raised an increasing interest in the regeneration of the anterior cruciate ligament(ACL). It is the aim of this article to review the current research efforts and highlight promising tissue engineering strategies. The four main components of tissue engineering also apply in several ACL regeneration research efforts. Scaffolds from biological materials, biodegradable polymers and composite materials are used. The main cell sources are mesenchymal stem cells and ACL fibroblasts. In addition, growth factors and mechanical stimuli are applied. So far, the regenerated ACL constructs have been tested in a few animal studies and the results are encouraging. The different strategies, from in vitro ACL regeneration in bioreactor systems to bio-enhanced repair and regeneration, are under constant development. We expect considerable progress in the near future that will result in a realistic option for ACL surgery soon.展开更多
Biopharmaceuticals,such as proteins,peptides,nucleic acids and vaccines,bring about great hopes for the prevention and treatment of various diseases,but the industrialization of these products still faces challenges s...Biopharmaceuticals,such as proteins,peptides,nucleic acids and vaccines,bring about great hopes for the prevention and treatment of various diseases,but the industrialization of these products still faces challenges such as structural instability,inefficient bioactivity and low bioavailability.Ionic liquids(ILs),the marvelous solvent media with inimitable and tunable properties,may provide alternative solutions to overcome the above problems of biopharmaceutical industry.Progress has gradually been made through studies by combination of ILs with biomacromolecules.The applications involved the stabilization,protection,and delivery of biopharmaceuticals.Recent trends are being forwarded to using ILs in vaccines and nucleic acid drugs.However,challenges remain on the toxicity and safety issues.Besides,the cost of adding ILs to the benefits of biopharmaceuticals need to be considered.展开更多
The inherent shortcomings of a zinc anode in aqueous zinc‐ion batteries(ZIBs)such as zinc dendrites and side reactions severely limit their practical application.Herein,to address these issues,an ion‐oriented transp...The inherent shortcomings of a zinc anode in aqueous zinc‐ion batteries(ZIBs)such as zinc dendrites and side reactions severely limit their practical application.Herein,to address these issues,an ion‐oriented transport channel constructed by graphdiyne(GDY)nanowalls is designed and grown in situ on the surface of a zinc electrode.The vertically stacked GDY nanowalls with a unique hierarchical porous structure and mechanical properties form a nanomesh‐like interface on the zinc electrode,acting as an ion‐oriented channel,which can efficiently confine the segmented growth of zinc metal in microscopic regions of hundreds of nanometers.In those microscopic regions,the uniform domain current density is effortlessly maintained compared with a large surface area,thereby inhibiting zinc dendrites effectively.Besides,due to the presence of the ion‐oriented channel,the modified zinc anode demonstrates long‐term stable zinc plating/stripping performance for more than 600 h at 1 mAh cm^(−2)in an aqueous electrolyte.In addition,full‐cells coupled with MnO2 show high specific capacity and power density,as well as excellent cycling stability with a capacity retention of 82%after 5000 cycles at 1 A g^(−1).This work provides a feasible and accessible surface engineering approach to modify the electrode interface for confined and dendrite‐free zinc deposition in aqueous ZIBs.展开更多
1.Introduction Despite being widely known and investigated as a computer science discipline,artificial intelligence(AI)has attracted incomparable interest from researchers in diversified areas[1].In 1950,Alan Turing r...1.Introduction Despite being widely known and investigated as a computer science discipline,artificial intelligence(AI)has attracted incomparable interest from researchers in diversified areas[1].In 1950,Alan Turing raised the classic question that has inspired numerous researchers to date:“Can machines think?”[2].The ultimate benchmark of AI was set by Turing’s revised“imitation game.”展开更多
Developing highly efficient,durable,and non-noble electrocatalysts for the sluggish anodic oxygen evolution reaction(OER)is the pivotal for meeting the practical demand in water splitting.However,the current transitio...Developing highly efficient,durable,and non-noble electrocatalysts for the sluggish anodic oxygen evolution reaction(OER)is the pivotal for meeting the practical demand in water splitting.However,the current transition-metal electrocatalysts still suffer from low activity and durability on account of poor interfacial reaction kinetics.In this work,a facile solid-state synthesis strategy is developed to construct transition-metal sulfides heterostructures(denoted as MS_(2)/NiS_(2),M=Mo or W)for boosting OER electrocatalysis.As a result,MoS2/NiS2 and WS2/NiS2 show lower overpotentials of 300 mV and 320 mV to achieve the current density of 10 mA·cm^(-2),and smaller Tafel slopes of 60 mV.dec^(-1) and 83 mV.dec^(-1)in 1 mol·L^(-1) KOH,respectively,in comparison with the single MoS2,WS2,NiS2,as well as even the benchmark RuO2.The experiments reveal that the designed heterostructures have strong electronic interactions and spontaneously develop a built-in electric field at the heterointerface with uneven charge distribution based on the difference of band structures,which promote interfacial charge transfer,improve absorptivity of OH-,and modulate the energy level more comparable to the OER.Thus,the designed transition-metal sulfides heterostructures exhibit a remarkably high electrocatalytic activity for OER.This study provides a simple strategy to manipulate the heterostructure interface via an energy level engineering method for OER and can be extended to fabricate other heterostructures for various energy-related applications.展开更多
A short presentation of chemical engineering evolution,as guided by its paradigms,is exposed.The first paradigm–unit operations–has emerged as a necessity of systematization due to the explosion of chemical industri...A short presentation of chemical engineering evolution,as guided by its paradigms,is exposed.The first paradigm–unit operations–has emerged as a necessity of systematization due to the explosion of chemical industrial applications at the end of 19th century.The birth in the late 1950s of the second paradigm–transport phenomena–was the consequence of the need for a deep,scienti fic knowledge of the phenomena that explain what happens inside of unit operations.In the second part of 20th century,the importance of chemical product properties and qualities has become essentially in the market fights.Accordingly,it was required with additional and even new fundamental approaches,and product engineering was recognized as the third paradigm.Nowadays chemical industry,as a huge materials and energy consumer,and with a strong ecological impact,couldn't remain outside of sustainability requirements.The basics of the fourth paradigm–sustainable chemical engineering–are now formulated.展开更多
Lithium recovery from spent lithium-ion batteries(LIBs)have attracted extensive attention due to the skyrocketing price of lithium.The medium-temperature carbon reduction roasting was proposed to preferential selectiv...Lithium recovery from spent lithium-ion batteries(LIBs)have attracted extensive attention due to the skyrocketing price of lithium.The medium-temperature carbon reduction roasting was proposed to preferential selective extraction of lithium from spent Li-CoO_(2)(LCO)cathodes to overcome the incomplete recovery and loss of lithium during the recycling process.The LCO layered structure was destroyed and lithium was completely converted into water-soluble Li2CO_(3)under a suitable temperature to control the reduced state of the cobalt oxide.The Co metal agglomerates generated during medium-temperature carbon reduction roasting were broken by wet grinding and ultrasonic crushing to release the entrained lithium.The results showed that 99.10%of the whole lithium could be recovered as Li2CO_(3)with a purity of 99.55%.This work provided a new perspective on the preferentially selective extraction of lithium from spent lithium batteries.展开更多
Neuronal injury,aging,and cerebrovascular and neurodegenerative diseases such as cerebral infarction,Alzheimer’s disease,Parkinson’s disease,frontotemporal dementia,amyotrophic lateral sclerosis,and Huntington’s di...Neuronal injury,aging,and cerebrovascular and neurodegenerative diseases such as cerebral infarction,Alzheimer’s disease,Parkinson’s disease,frontotemporal dementia,amyotrophic lateral sclerosis,and Huntington’s disease are characte rized by significant neuronal loss.Unfo rtunately,the neurons of most mammals including humans do not possess the ability to self-regenerate.Replenishment of lost neurons becomes an appealing therapeutic strategy to reve rse the disease phenotype.Transplantation of pluripotent neural stem cells can supplement the missing neurons in the brain,but it carries the risk of causing gene mutation,tumorigenesis,severe inflammation,and obstructive hydrocephalus induced by brain edema.Conversion of neural or non-neural lineage cells into functional neurons is a promising strategy for the diseases involving neuron loss,which may overcome the above-mentioned disadvantages of neural stem cell therapy.Thus far,many strategies to transfo rm astrocytes,fibroblasts,microglia,Muller glia,NG2 cells,and other glial cells to mature and functional neurons,or for the conversion between neuronal subtypes have been developed thro ugh the regulation of transcription factors,polypyrimidine tra ct binding protein 1(PTBP1),and small chemical molecules or are based on a combination of several factors and the location in the central nervous system.However,some recent papers did not obtain expected results,and discrepancies exist.Therefore,in this review,we discuss the history of neuronal transdifferentiation,summarize the strategies for neuronal replenishment and conversion from glia,especially astrocytes,and point out that biosafety,new strategies,and the accurate origin of the truly co nverted neurons in vivo should be focused upon in future studies.It also arises the attention of replenishing the lost neurons from glia by gene therapies such as up-regulation of some transc ription factors or downregulation of PTBP1 or drug interfe rence therapies.展开更多
The development of effective antifreeze peptides to control ice growth has attracted a significant amount of attention yet still remains a great challenge.Here,we propose a novel design method based on in-depth invest...The development of effective antifreeze peptides to control ice growth has attracted a significant amount of attention yet still remains a great challenge.Here,we propose a novel design method based on in-depth investigation of repetitive motifs in various ice-binding proteins(IBPs)with evolution analysis.In this way,several peptides with notable antifreeze activity were developed.In particular,a designed antifreeze peptide named AVD exhibits ideal ice recrystallization inhibition(IRI),solubility,and biocompatibility,making it suitable for use as a cryoprotective agent(CPA).A mutation analysis and molecular dynamics(MD)simulations indicated that the Thr6 and Asn8 residues of the AVD peptide are fundamental to its ice-binding capacity,while the Ser18 residue can synergistically enhance their interaction with ice,revealing the antifreeze mechanism of AVD.Furthermore,to evaluate the cryoprotection potential of AVD,the peptide was successfully employed for the cryopreservation of various cells,which demonstrated significant post-freezing cell recovery.This work opens up a new avenue for designing antifreeze materials and provides peptide-based functional modules for synthetic biology.展开更多
Hydrodynamics characterization in terms offlow regime behavior is a crucial task to enhance the design of bubble column reactors and scaling up related methodologies.This review presents recent studies on the typicalflo...Hydrodynamics characterization in terms offlow regime behavior is a crucial task to enhance the design of bubble column reactors and scaling up related methodologies.This review presents recent studies on the typicalflow regimes established in bubble columns.Some effort is also provided to introduce relevant definitions pertaining to thisfield,namely,that of“void fraction”and related(local,chordal,cross-sectional and volumetric)variants.Experimental studies involving different parameters that affect design and operating conditions are also discussed in detail.In the second part of the review,the attention is shifted to cases with internals of various types(perfo-rated plates,baffles,vibrating helical springs,mixers,and heat exchanger tubes)immersed in the bubble columns.It is shown that the presence of these elements has a limited influence on the global column hydrodynamics.However,they can make the homogeneousflow regime more stable in terms of transition gas velocity and transi-tion holdup value.The last section is used to highlight gaps which have not beenfilled yet and future directions of investigation.展开更多
Hyperuricemia(HUA)is a vital risk factor for chronic kidney diseases(CKD)and development of functional foods capable of protecting CKD is of importance.This paper aimed to explore the amelioration effects and mechanis...Hyperuricemia(HUA)is a vital risk factor for chronic kidney diseases(CKD)and development of functional foods capable of protecting CKD is of importance.This paper aimed to explore the amelioration effects and mechanism of Andrias davidianus bone peptides(ADBP)on HUA-induced kidney damage.In the present study,we generated the standard ADBP which contained high hydrophobic amino acid and low molecular peptide contents.In vitro results found that ADBP protected uric acid(UA)-induced HK-2 cells from damage by modulating urate transporters and antioxidant defense.In vivo results indicated that ADBP effectively ameliorated renal injury in HUA-induced CKD mice,evidenced by a remarkable decrease in serum UA,creatinine and blood urea nitrogen,improving kidney UA excretion,antioxidant defense and histological kidney deterioration.Metabolomic analysis highlighted 14 metabolites that could be selected as potential biomarkers and attributed to the amelioration effects of ADBP on CKD mice kidney dysfunction.Intriguingly,ADBP restored the gut microbiome homeostasis in CKD mice,especially with respect to the elevated helpful microbial abundance,and the decreased harmful bacterial abundance.This study demonstrated that ADBP displayed great nephroprotective effects,and has great promise as a food or functional food ingredient for the prevention and treatment of HUA-induced CKD.展开更多
Ammonia serves both as a widely used fertilizer and environmentally friendly energy source due to its high energy density,rich hydrogen content,and emissions-free combustion.Additionally,it offers convenient transport...Ammonia serves both as a widely used fertilizer and environmentally friendly energy source due to its high energy density,rich hydrogen content,and emissions-free combustion.Additionally,it offers convenient transportation and storage as a hydrogen carrier.The dominant method used for large-scale ammonia production is the Haber-Bosch process,which requires high temperatures and pressures and is energy-intensive.However,non-thermal plasma offers an eco-friendly alternative for ammonia synthesis,gaining significant attention.It enables ammonia production at lower temperatures and pressures using plasma technology.This review provides insights into the catalyst and reactor developments,which are pivotal for promoting ammonia efficiency and addressing existing challenges.At first,the reaction kinetics and mechanisms are introduced to gain a comprehensive understanding of the reaction pathways involved in plasma-assisted ammonia synthesis.Thereafter,the enhancement of ammonia synthesis efficiency is discussed by developing and optimizing plasma reactors and effective catalysts.The effect of other feeding sources,such as water and methane,instead of hydrogen is also presented.Finally,the challenges and possible solutions are outlined to facilitate energy-saving and enhance ammonia efficiency in the future.展开更多
In order to alleviate the pressure on the supply of lithium resources, this research proposes the use of binary/ternary collectors with high selectivity and collecting ability to enhance the flotation purification of ...In order to alleviate the pressure on the supply of lithium resources, this research proposes the use of binary/ternary collectors with high selectivity and collecting ability to enhance the flotation purification of low-grade zinnwaldite ore. The binary collector is a mixture of dodecylamine polyoxyethylene ether and DL-2-octanol. A binary collector is added first, followed by sodium oleate, known as a ternary collector. Under acidic conditions, the recovery of Li2O in the concentrate was increased by 8.26% with the binary collector and 13.70% with the ternary collector, compared to the dodecylamine polyoxyethylene ether. The binary collector enhanced the dispersibility of the single collector, while co-adsorption strengthened the hydrophobic nature of the zinnwaldite surface. Consequently, zinnwaldite particles,after the application of binary collector, displayed inter-particle flocculation and attachment to bubbles within 60×10^(-9)m compared to other particles. Ternary collector exhibited the capacity to lower critical micelle concentration and surface tension, subsequently inducing a denser and thicker hydrophobic layer through electrostatic forces, hydrophobic interactions, and chemical reactions. The objective of this research is to facilitate the recovery of lithium resources from low-grade ores in order to meet the needs of sustainable development.展开更多
The bioreduction of graphene oxide(GO)using environmentally functional bacteria such as Shewanella represents a green approach to produce reduced graphene oxide(rGO).This process differs from the chemical reduction th...The bioreduction of graphene oxide(GO)using environmentally functional bacteria such as Shewanella represents a green approach to produce reduced graphene oxide(rGO).This process differs from the chemical reduction that involves instantaneous molecular reactions.In bioreduction,the contact of bacterial cells and GO is considered the rate-limiting step.To reveal how the bacteria-GO integration regulates rGO production,the comparative experiments of GO and three Shewanella strains were carried out.Fourier-transform infrared spectroscopy,X-ray photoelectron spectroscopy,Raman spectroscopy,and atomic force microscopy were used to characterize the reduction degree and the aggregation degree.The results showed that a spontaneous aggregation of GO and Shewanella into the condensed entity occurred within 36 h.A positive linear correlation was established,linking three indexes of the aggregation potential,the bacterial reduction ability,and the reduction degree(ID/IG)comprehensively.展开更多
Ligament cryopreservation enables a prolonged shelf life of allogeneic ligament grafts,which is fundamentally important to ligament reconstruction.However,conventional cryopreservation techniques fail to eliminate the...Ligament cryopreservation enables a prolonged shelf life of allogeneic ligament grafts,which is fundamentally important to ligament reconstruction.However,conventional cryopreservation techniques fail to eliminate the damage caused by ice crystal growth and the toxicity of cryopreservation agents(CPAs).Here,we report a novel CPA vitrification formulation primarily composed of betaine for ligament cryopreservation.Comprehensive optimization was conducted on the methods for vitrification and rewarming,as well as the loading and unloading conditions,based on the critical cooling rate(CCR),critical warming rate(CWR),and permeation properties of the CPA.Using biomechanical and histological level tests,we demonstrate the superior performance of our method in ligament cryopreservation.After 30 days of vitrification cryopreservation,parameters such as the Young's modulus,tensile stress,denaturation temperature,and glycosaminoglycans content of the ligament remained essentially unchanged.This work pioneers the application of ice-free cryopreservation for ligament and holds great potential for improving the long-term storage of ligament,providing valuable insights for future cryopreservation technique development.展开更多
文摘Biochemical Engineering(BCE)discipline had largely developed from fermentation technology studies from 1950s through 1960s when fermentation emerged as the core technology able to address multiple industrial needs ranging from health care products such as antibiotics;food products such as single cell proteins,amino acids,organic acids,and vitamins;liquid fuels and chemicals such as ethanol and acetic acid;and industrial enzymes.
基金supported by the National Natural Science Foundation of China(52363028,21965005)the Natural Science Foundation of Guangxi Province(2021GXNSFAA076001)the Guangxi Technology Base and Talent Subject(GUIKE AD18126001,GUIKE AD20297039)。
文摘Tackling the problem of poor conductivity and catalytic stability of pristine metal-organic frameworks(MOFs) is crucial to improve their oxygen evolution reaction(OER) performance.Herein,we introduce a novel strategy of dysprosium(Dy) doping,using the unique 4f orbitals of this rare earth element to enhance electrocatalytic activity of MOFs.Our method involves constructing Dy-doped Ni-MOF(Dy@Ni-MOF) nanoneedles on carbon cloth via a Dy-induced valence electronic perturbation approach.Experiments and density functional theory(DFT) calculations reveal that Dy doping can effectively modify the electronic structure of the Ni active centers and foster a strong electronic interaction between Ni and Dy.The resulting benefits include a reduced work function and a closer proximity of the d-band center to the Fermi level,which is conducive to improving electrical conductivity and promoting the adsorption of oxygen-containing intermediates.Furthermore,the Dy@Ni-MOF achieves superhydrophilicity,ensuring effective electrolyte contact and thus accelerating reaction kinetics,Ex-situ and in-situ analysis results manifest Dy_(2)O_(3)/NiOOH as the actual active species.Therefore,Dy@Ni-MOF shows impressive OER performance,significantly surpassing Ni-MOF.Besides,the overall water splitting device with Dy@NiMOF as an anode delivers a low cell voltage of 1.51 V at 10 mA cm^(-2) and demonstrates long-term stability for 100 h,positioning it as a promising substitute for precious metal catalysts.
基金funded by the National Key Research and Development Program of China(2018YFA0900702).
文摘Biocatalysis in organic solvents(OSs)has numerous important applications,but native enzymes in OSs often exhibit limited catalytic performance.Herein,we proposed a computation-aided surface charge engineering strategy to improve the catalytic performance of haloalkane dehalogenase DhaA in OSs based on the energetic analysis of substrate binding to the DhaA surface.Several variants with enhanced OS resistance were obtained by replacing negative charged residues on the surface with positive charged residue(Arg).Particularly,a four-substitution variant E16R/E93R/E121R/E257R exhibited the best catalytic performance(five-fold improvement in OS resistance and seven-fold half-life increase in 40%(vol)dimethylsulfoxide).As a result,the overall catalytic performance of the variant could be at least 26 times higher than the wild-type DhaA.Fluorescence spectroscopy and molecular dynamics simulation studies revealed that the residue substitution mainly enhanced OS resistance from four aspects:(a)improved the overall structural stability,(b)increased the hydrophobicity of the local microenvironment around the catalytic triad,(c)enriched the hydrophobic substrate around the enzyme molecule,and(d)lowered the contact frequency between OS molecules and the catalytic triad.Our findings validate that computationaided surface charge engineering is an effective and ingenious rational strategy for tailoring enzyme performance in OSs.
文摘The issue of opacity within data-driven artificial intelligence(AI)algorithms has become an impediment to these algorithms’extensive utilization,especially within sensitive domains concerning health,safety,and high profitability,such as chemical engineering(CE).In order to promote reliable AI utilization in CE,this review discusses the concept of transparency within AI utilizations,which is defined based on both explainable AI(XAI)concepts and key features from within the CE field.This review also highlights the requirements of reliable AI from the aspects of causality(i.e.,the correlations between the predictions and inputs of an AI),explainability(i.e.,the operational rationales of the workflows),and informativeness(i.e.,the mechanistic insights of the investigating systems).Related techniques are evaluated together with state-of-the-art applications to highlight the significance of establishing reliable AI applications in CE.Furthermore,a comprehensive transparency analysis case study is provided as an example to enhance understanding.Overall,this work provides a thorough discussion of this subject matter in a way that—for the first time—is particularly geared toward chemical engineers in order to raise awareness of responsible AI utilization.With this vital missing link,AI is anticipated to serve as a novel and powerful tool that can tremendously aid chemical engineers in solving bottleneck challenges in CE.
基金financially supported by the National Natural Science Foundation of China(No.22072069)the Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials(Wuhan University of Science and Technology No.WKDM202303).
文摘Spinel oxide(NiCo_(2)O_(4))has demonstrated great potential to replace noble metal catalysts for the oxidation reaction of air pollutants.To further boost the oxidation ability of such catalysts,in this study,a facile surface-engineering strategy wherein NiCo_(2)O_(4) was treated with different alkali solvents was developed.The obtained catalyst(NiCo_(2)O_(4)-OH)showed a higher surface alkalinity and more surface defects compared to the pristine spinel oxide,including enhanced structural distortion as well as promoted oxygen vacancies.The propane oxidation ability of NiCo_(2)O_(4)-OH was greatly enhanced,with a propane conversion rate that was approximately 6.4 times higher than that of pristine NiCo_(2)O_(4) at a reaction temperature 193℃.This work sets a valuable paradigm for the surface modulation of spinel oxide via alkali treatment to ensure a high-performance oxidation catalyst.
基金Supported by The City of Vienna(MA 27-Project 12-06)the Austrian's Working Compensation Board(AUVA)+1 种基金the Austrian Research Agency FFG,Bridge-Project,No.#815471the New Tissue Project,No.FFG#818412
文摘Recent advancements in the field of musculoskeletaltissue engineering have raised an increasing interest in the regeneration of the anterior cruciate ligament(ACL). It is the aim of this article to review the current research efforts and highlight promising tissue engineering strategies. The four main components of tissue engineering also apply in several ACL regeneration research efforts. Scaffolds from biological materials, biodegradable polymers and composite materials are used. The main cell sources are mesenchymal stem cells and ACL fibroblasts. In addition, growth factors and mechanical stimuli are applied. So far, the regenerated ACL constructs have been tested in a few animal studies and the results are encouraging. The different strategies, from in vitro ACL regeneration in bioreactor systems to bio-enhanced repair and regeneration, are under constant development. We expect considerable progress in the near future that will result in a realistic option for ACL surgery soon.
基金The authors are thankful for the financial support from the National Natural Science Foundation of China(Nos.21808226,31970872,and 21821005).
文摘Biopharmaceuticals,such as proteins,peptides,nucleic acids and vaccines,bring about great hopes for the prevention and treatment of various diseases,but the industrialization of these products still faces challenges such as structural instability,inefficient bioactivity and low bioavailability.Ionic liquids(ILs),the marvelous solvent media with inimitable and tunable properties,may provide alternative solutions to overcome the above problems of biopharmaceutical industry.Progress has gradually been made through studies by combination of ILs with biomacromolecules.The applications involved the stabilization,protection,and delivery of biopharmaceuticals.Recent trends are being forwarded to using ILs in vaccines and nucleic acid drugs.However,challenges remain on the toxicity and safety issues.Besides,the cost of adding ILs to the benefits of biopharmaceuticals need to be considered.
基金National Natural Science Foundation of China,Grant/Award Numbers:21701182,21771187,21790050,21790051,22005323Frontier Science Research Project of the Chinese Academy of Sciences,Grant/Award Number:QYZDB‐SSWJSC052+1 种基金Taishan Scholars Program of Shandong Province,Grant/Award Number:tsqn201812111ICCAS Institute Research Project。
文摘The inherent shortcomings of a zinc anode in aqueous zinc‐ion batteries(ZIBs)such as zinc dendrites and side reactions severely limit their practical application.Herein,to address these issues,an ion‐oriented transport channel constructed by graphdiyne(GDY)nanowalls is designed and grown in situ on the surface of a zinc electrode.The vertically stacked GDY nanowalls with a unique hierarchical porous structure and mechanical properties form a nanomesh‐like interface on the zinc electrode,acting as an ion‐oriented channel,which can efficiently confine the segmented growth of zinc metal in microscopic regions of hundreds of nanometers.In those microscopic regions,the uniform domain current density is effortlessly maintained compared with a large surface area,thereby inhibiting zinc dendrites effectively.Besides,due to the presence of the ion‐oriented channel,the modified zinc anode demonstrates long‐term stable zinc plating/stripping performance for more than 600 h at 1 mAh cm^(−2)in an aqueous electrolyte.In addition,full‐cells coupled with MnO2 show high specific capacity and power density,as well as excellent cycling stability with a capacity retention of 82%after 5000 cycles at 1 A g^(−1).This work provides a feasible and accessible surface engineering approach to modify the electrode interface for confined and dendrite‐free zinc deposition in aqueous ZIBs.
基金The Department of Science and Technology of Zhejiang Province is acknowledged for this research under its Provincial Key Laboratory Programme(2020E10018).
文摘1.Introduction Despite being widely known and investigated as a computer science discipline,artificial intelligence(AI)has attracted incomparable interest from researchers in diversified areas[1].In 1950,Alan Turing raised the classic question that has inspired numerous researchers to date:“Can machines think?”[2].The ultimate benchmark of AI was set by Turing’s revised“imitation game.”
基金supported by the National Natural Science Foun-dation of China(21922814,22138012,21961160745,21921005,22178349,22078333,22108281 and 31961133019)Excellent Member in Youth Innovation Promotion Association,Chinese Academy of Sciences(Y202014)Shandong Energy Institute(Grant Number SEI 1202133).
文摘Developing highly efficient,durable,and non-noble electrocatalysts for the sluggish anodic oxygen evolution reaction(OER)is the pivotal for meeting the practical demand in water splitting.However,the current transition-metal electrocatalysts still suffer from low activity and durability on account of poor interfacial reaction kinetics.In this work,a facile solid-state synthesis strategy is developed to construct transition-metal sulfides heterostructures(denoted as MS_(2)/NiS_(2),M=Mo or W)for boosting OER electrocatalysis.As a result,MoS2/NiS2 and WS2/NiS2 show lower overpotentials of 300 mV and 320 mV to achieve the current density of 10 mA·cm^(-2),and smaller Tafel slopes of 60 mV.dec^(-1) and 83 mV.dec^(-1)in 1 mol·L^(-1) KOH,respectively,in comparison with the single MoS2,WS2,NiS2,as well as even the benchmark RuO2.The experiments reveal that the designed heterostructures have strong electronic interactions and spontaneously develop a built-in electric field at the heterointerface with uneven charge distribution based on the difference of band structures,which promote interfacial charge transfer,improve absorptivity of OH-,and modulate the energy level more comparable to the OER.Thus,the designed transition-metal sulfides heterostructures exhibit a remarkably high electrocatalytic activity for OER.This study provides a simple strategy to manipulate the heterostructure interface via an energy level engineering method for OER and can be extended to fabricate other heterostructures for various energy-related applications.
文摘A short presentation of chemical engineering evolution,as guided by its paradigms,is exposed.The first paradigm–unit operations–has emerged as a necessity of systematization due to the explosion of chemical industrial applications at the end of 19th century.The birth in the late 1950s of the second paradigm–transport phenomena–was the consequence of the need for a deep,scienti fic knowledge of the phenomena that explain what happens inside of unit operations.In the second part of 20th century,the importance of chemical product properties and qualities has become essentially in the market fights.Accordingly,it was required with additional and even new fundamental approaches,and product engineering was recognized as the third paradigm.Nowadays chemical industry,as a huge materials and energy consumer,and with a strong ecological impact,couldn't remain outside of sustainability requirements.The basics of the fourth paradigm–sustainable chemical engineering–are now formulated.
基金the Science and Technology Key Project of Anhui Province,China(No.2022e03020004).
文摘Lithium recovery from spent lithium-ion batteries(LIBs)have attracted extensive attention due to the skyrocketing price of lithium.The medium-temperature carbon reduction roasting was proposed to preferential selective extraction of lithium from spent Li-CoO_(2)(LCO)cathodes to overcome the incomplete recovery and loss of lithium during the recycling process.The LCO layered structure was destroyed and lithium was completely converted into water-soluble Li2CO_(3)under a suitable temperature to control the reduced state of the cobalt oxide.The Co metal agglomerates generated during medium-temperature carbon reduction roasting were broken by wet grinding and ultrasonic crushing to release the entrained lithium.The results showed that 99.10%of the whole lithium could be recovered as Li2CO_(3)with a purity of 99.55%.This work provided a new perspective on the preferentially selective extraction of lithium from spent lithium batteries.
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences,No.XDB39050600(to RL)the National Natural Science Foundation of China,No.81971610(to RL)Beijing Rehabilitation Hospital Introduction of Talent Research Start-up Fund,No.2021R-008(to JZ)。
文摘Neuronal injury,aging,and cerebrovascular and neurodegenerative diseases such as cerebral infarction,Alzheimer’s disease,Parkinson’s disease,frontotemporal dementia,amyotrophic lateral sclerosis,and Huntington’s disease are characte rized by significant neuronal loss.Unfo rtunately,the neurons of most mammals including humans do not possess the ability to self-regenerate.Replenishment of lost neurons becomes an appealing therapeutic strategy to reve rse the disease phenotype.Transplantation of pluripotent neural stem cells can supplement the missing neurons in the brain,but it carries the risk of causing gene mutation,tumorigenesis,severe inflammation,and obstructive hydrocephalus induced by brain edema.Conversion of neural or non-neural lineage cells into functional neurons is a promising strategy for the diseases involving neuron loss,which may overcome the above-mentioned disadvantages of neural stem cell therapy.Thus far,many strategies to transfo rm astrocytes,fibroblasts,microglia,Muller glia,NG2 cells,and other glial cells to mature and functional neurons,or for the conversion between neuronal subtypes have been developed thro ugh the regulation of transcription factors,polypyrimidine tra ct binding protein 1(PTBP1),and small chemical molecules or are based on a combination of several factors and the location in the central nervous system.However,some recent papers did not obtain expected results,and discrepancies exist.Therefore,in this review,we discuss the history of neuronal transdifferentiation,summarize the strategies for neuronal replenishment and conversion from glia,especially astrocytes,and point out that biosafety,new strategies,and the accurate origin of the truly co nverted neurons in vivo should be focused upon in future studies.It also arises the attention of replenishing the lost neurons from glia by gene therapies such as up-regulation of some transc ription factors or downregulation of PTBP1 or drug interfe rence therapies.
基金supported by the National Key Research and Development Program of China (2021YFC2100800)the National Natural Science Foundation of China (22078238,21961132005,and 21908160)+1 种基金the Open Funding Project of the National Key Laboratory of Biochemical Engineeringthe Program of Introducing Talents of Discipline to Universities (BP0618007)。
文摘The development of effective antifreeze peptides to control ice growth has attracted a significant amount of attention yet still remains a great challenge.Here,we propose a novel design method based on in-depth investigation of repetitive motifs in various ice-binding proteins(IBPs)with evolution analysis.In this way,several peptides with notable antifreeze activity were developed.In particular,a designed antifreeze peptide named AVD exhibits ideal ice recrystallization inhibition(IRI),solubility,and biocompatibility,making it suitable for use as a cryoprotective agent(CPA).A mutation analysis and molecular dynamics(MD)simulations indicated that the Thr6 and Asn8 residues of the AVD peptide are fundamental to its ice-binding capacity,while the Ser18 residue can synergistically enhance their interaction with ice,revealing the antifreeze mechanism of AVD.Furthermore,to evaluate the cryoprotection potential of AVD,the peptide was successfully employed for the cryopreservation of various cells,which demonstrated significant post-freezing cell recovery.This work opens up a new avenue for designing antifreeze materials and provides peptide-based functional modules for synthetic biology.
文摘Hydrodynamics characterization in terms offlow regime behavior is a crucial task to enhance the design of bubble column reactors and scaling up related methodologies.This review presents recent studies on the typicalflow regimes established in bubble columns.Some effort is also provided to introduce relevant definitions pertaining to thisfield,namely,that of“void fraction”and related(local,chordal,cross-sectional and volumetric)variants.Experimental studies involving different parameters that affect design and operating conditions are also discussed in detail.In the second part of the review,the attention is shifted to cases with internals of various types(perfo-rated plates,baffles,vibrating helical springs,mixers,and heat exchanger tubes)immersed in the bubble columns.It is shown that the presence of these elements has a limited influence on the global column hydrodynamics.However,they can make the homogeneousflow regime more stable in terms of transition gas velocity and transi-tion holdup value.The last section is used to highlight gaps which have not beenfilled yet and future directions of investigation.
基金financially supported by Shenzhen Agricultural Development Special Fund(Fishery)Agricultural High-Tech Project([2021]735)the Shenzhen Science and Technology Innovation Commission(KCXFZ20201221173207022)Youth Science Foundation Project(32101936)。
文摘Hyperuricemia(HUA)is a vital risk factor for chronic kidney diseases(CKD)and development of functional foods capable of protecting CKD is of importance.This paper aimed to explore the amelioration effects and mechanism of Andrias davidianus bone peptides(ADBP)on HUA-induced kidney damage.In the present study,we generated the standard ADBP which contained high hydrophobic amino acid and low molecular peptide contents.In vitro results found that ADBP protected uric acid(UA)-induced HK-2 cells from damage by modulating urate transporters and antioxidant defense.In vivo results indicated that ADBP effectively ameliorated renal injury in HUA-induced CKD mice,evidenced by a remarkable decrease in serum UA,creatinine and blood urea nitrogen,improving kidney UA excretion,antioxidant defense and histological kidney deterioration.Metabolomic analysis highlighted 14 metabolites that could be selected as potential biomarkers and attributed to the amelioration effects of ADBP on CKD mice kidney dysfunction.Intriguingly,ADBP restored the gut microbiome homeostasis in CKD mice,especially with respect to the elevated helpful microbial abundance,and the decreased harmful bacterial abundance.This study demonstrated that ADBP displayed great nephroprotective effects,and has great promise as a food or functional food ingredient for the prevention and treatment of HUA-induced CKD.
基金the financial support provided by the Canada Research Chair program and the Natural Science and Engineering Research Council of Canada (NSERC)
文摘Ammonia serves both as a widely used fertilizer and environmentally friendly energy source due to its high energy density,rich hydrogen content,and emissions-free combustion.Additionally,it offers convenient transportation and storage as a hydrogen carrier.The dominant method used for large-scale ammonia production is the Haber-Bosch process,which requires high temperatures and pressures and is energy-intensive.However,non-thermal plasma offers an eco-friendly alternative for ammonia synthesis,gaining significant attention.It enables ammonia production at lower temperatures and pressures using plasma technology.This review provides insights into the catalyst and reactor developments,which are pivotal for promoting ammonia efficiency and addressing existing challenges.At first,the reaction kinetics and mechanisms are introduced to gain a comprehensive understanding of the reaction pathways involved in plasma-assisted ammonia synthesis.Thereafter,the enhancement of ammonia synthesis efficiency is discussed by developing and optimizing plasma reactors and effective catalysts.The effect of other feeding sources,such as water and methane,instead of hydrogen is also presented.Finally,the challenges and possible solutions are outlined to facilitate energy-saving and enhance ammonia efficiency in the future.
基金supported by the National Key Research and Development Program of China(No.2023YFC2811403).
文摘In order to alleviate the pressure on the supply of lithium resources, this research proposes the use of binary/ternary collectors with high selectivity and collecting ability to enhance the flotation purification of low-grade zinnwaldite ore. The binary collector is a mixture of dodecylamine polyoxyethylene ether and DL-2-octanol. A binary collector is added first, followed by sodium oleate, known as a ternary collector. Under acidic conditions, the recovery of Li2O in the concentrate was increased by 8.26% with the binary collector and 13.70% with the ternary collector, compared to the dodecylamine polyoxyethylene ether. The binary collector enhanced the dispersibility of the single collector, while co-adsorption strengthened the hydrophobic nature of the zinnwaldite surface. Consequently, zinnwaldite particles,after the application of binary collector, displayed inter-particle flocculation and attachment to bubbles within 60×10^(-9)m compared to other particles. Ternary collector exhibited the capacity to lower critical micelle concentration and surface tension, subsequently inducing a denser and thicker hydrophobic layer through electrostatic forces, hydrophobic interactions, and chemical reactions. The objective of this research is to facilitate the recovery of lithium resources from low-grade ores in order to meet the needs of sustainable development.
基金supported by the National Natural Science Foundation of China(22178293)the Natural Science Foundation of Fujian Province of China(2022J01022)。
文摘The bioreduction of graphene oxide(GO)using environmentally functional bacteria such as Shewanella represents a green approach to produce reduced graphene oxide(rGO).This process differs from the chemical reduction that involves instantaneous molecular reactions.In bioreduction,the contact of bacterial cells and GO is considered the rate-limiting step.To reveal how the bacteria-GO integration regulates rGO production,the comparative experiments of GO and three Shewanella strains were carried out.Fourier-transform infrared spectroscopy,X-ray photoelectron spectroscopy,Raman spectroscopy,and atomic force microscopy were used to characterize the reduction degree and the aggregation degree.The results showed that a spontaneous aggregation of GO and Shewanella into the condensed entity occurred within 36 h.A positive linear correlation was established,linking three indexes of the aggregation potential,the bacterial reduction ability,and the reduction degree(ID/IG)comprehensively.
基金supported by the National Natural Science Foundation of China(22078238,U23B20121)。
文摘Ligament cryopreservation enables a prolonged shelf life of allogeneic ligament grafts,which is fundamentally important to ligament reconstruction.However,conventional cryopreservation techniques fail to eliminate the damage caused by ice crystal growth and the toxicity of cryopreservation agents(CPAs).Here,we report a novel CPA vitrification formulation primarily composed of betaine for ligament cryopreservation.Comprehensive optimization was conducted on the methods for vitrification and rewarming,as well as the loading and unloading conditions,based on the critical cooling rate(CCR),critical warming rate(CWR),and permeation properties of the CPA.Using biomechanical and histological level tests,we demonstrate the superior performance of our method in ligament cryopreservation.After 30 days of vitrification cryopreservation,parameters such as the Young's modulus,tensile stress,denaturation temperature,and glycosaminoglycans content of the ligament remained essentially unchanged.This work pioneers the application of ice-free cryopreservation for ligament and holds great potential for improving the long-term storage of ligament,providing valuable insights for future cryopreservation technique development.