期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Wnt3a-induced ST2 decellularized matrix ornamented PCL scaffold for bone tissue engineering
1
作者 XIAOFANG WANG XIAOLIN TU +3 位作者 YUFEI MA JIE CHEN YANG SONG GUANGLIANG LIU 《BIOCELL》 SCIE 2022年第9期2089-2099,共11页
The limited bioactivity of scaffold materials is an important factor that restricts the development of bone tissue engineering.Wnt3a activates the classicWnt/β-catenin signaling pathway which effects bone growth and ... The limited bioactivity of scaffold materials is an important factor that restricts the development of bone tissue engineering.Wnt3a activates the classicWnt/β-catenin signaling pathway which effects bone growth and development by the accumulation ofβ-catenin in the nucleus.In this study,we fabricated 3D printed PCL scaffold with Wnt3a-induced murine bone marrow-derived stromal cell line ST2 decellularized matrix(Wnt3a-ST2-dCM-PCL)and ST2 decellularized matrix(ST2-dCM-PCL)by freeze-thaw cycle and DNase decellularization treatment which efficiently decellularized>90%DNA while preserved most protein.Compared to ST2-dCM-PCL,Wnt3a-ST2-dCM-PCL significantly enhanced newly-seeded ST2 proliferation,osteogenic differentiation and upregulated osteogenic marker genes alkaline phosphatase(Alp),Runx2,type I collagen(Col 1)and osteocalcin(Ocn)mRNA expression.After 14 days of osteogenic induction,Wnt3a-ST2-dCM-PCL promoted ST2 mineralization.These results demonstrated that Wnt3a-induced ST2 decellularized matrix improve scaffold materials’osteoinductivity and osteoconductivity. 展开更多
关键词 WNT3A Decellularized matrix Bone marrow stromal cells Osteogenic differentiation Bone tissue engineering
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部