Aims Light-use efficiency(LUE)is an important tool for scaling up local CO_(2)flux(F_(CO_(2)))tower observations to regional and global carbon dynamics.Using a data set including F_(CO_(2))and environmental factors ob...Aims Light-use efficiency(LUE)is an important tool for scaling up local CO_(2)flux(F_(CO_(2)))tower observations to regional and global carbon dynamics.Using a data set including F_(CO_(2))and environmental factors obtained from an alpine meadow on the Tibetan Plateau,we examined both diurnal and seasonal changes in LUE and the environmental factors controlling these changes.Our objectives were to(i)characterize the diurnal and daily variability of LUE in an alpine meadow,(ii)clarify the causes of this variability,and(iii)explore the possibility of applying the LUE approach to this alpine meadow by examining the relationship between daily LUE and hourly LUE at satellite visiting times.Methods First,we obtained the LUE—the ratio of the gross primary production(GPP)to the absorbed photosynthetically active radiation(APAR)—from the flux tower and meteorological observations.We then characterized the patterns of diurnal and seasonal changes in LUE,explored the environmental controls on LUE using univariate regression analyses and evaluated the effects of diffuse radiation on LUE by assigning weights through a linear programming method to beam photosynthetically active radiation(PAR)and diffuse PAR,which were separated from meteorological observations using an existing method.Finally,we examined the relationships between noontime hourly LUE and daily LUE and those between adjusted noontime hourly and daily LUE because satellites visit the site only once or twice a day,near noon.Important Findings The results showed that(i)the LUE of the alpine meadow generally followed the diurnal and seasonal patterns of solar radiation but fluctuated with changes in cloud cover.(ii)The fraction of diffuse light played a dominant role in LUE variation.Daily minimum temperature and vapor pressure deficit also affected LUE variation.(iii)The adjusted APAR,defined as the weighted linear sum of diffuse APAR and beam APAR,was linearly correlated with GPP on different temporal scales.(iv)Midday adjusted LUE was closely related to daily adjusted LUE,regardless of the cloud cover.The results indicated the importance of considering radiation direction when developing LUE-based GPP-estimating models.展开更多
基金Supported by the projects‘Integrated Study for Terrestrial Carbon Management of Asia in the 21st Century Based on Scientific Advancements’and‘Early Detection and Prediction of Climate Warming Based on the Long-Term Monitoring of Alpine Ecosystems on the Tibetan Plateau’funded by the Ministry of the Environment,Japanresearch fund from the Program for New Century Excellent Talents in University,from Ministry of Education,China,to J.C.
文摘Aims Light-use efficiency(LUE)is an important tool for scaling up local CO_(2)flux(F_(CO_(2)))tower observations to regional and global carbon dynamics.Using a data set including F_(CO_(2))and environmental factors obtained from an alpine meadow on the Tibetan Plateau,we examined both diurnal and seasonal changes in LUE and the environmental factors controlling these changes.Our objectives were to(i)characterize the diurnal and daily variability of LUE in an alpine meadow,(ii)clarify the causes of this variability,and(iii)explore the possibility of applying the LUE approach to this alpine meadow by examining the relationship between daily LUE and hourly LUE at satellite visiting times.Methods First,we obtained the LUE—the ratio of the gross primary production(GPP)to the absorbed photosynthetically active radiation(APAR)—from the flux tower and meteorological observations.We then characterized the patterns of diurnal and seasonal changes in LUE,explored the environmental controls on LUE using univariate regression analyses and evaluated the effects of diffuse radiation on LUE by assigning weights through a linear programming method to beam photosynthetically active radiation(PAR)and diffuse PAR,which were separated from meteorological observations using an existing method.Finally,we examined the relationships between noontime hourly LUE and daily LUE and those between adjusted noontime hourly and daily LUE because satellites visit the site only once or twice a day,near noon.Important Findings The results showed that(i)the LUE of the alpine meadow generally followed the diurnal and seasonal patterns of solar radiation but fluctuated with changes in cloud cover.(ii)The fraction of diffuse light played a dominant role in LUE variation.Daily minimum temperature and vapor pressure deficit also affected LUE variation.(iii)The adjusted APAR,defined as the weighted linear sum of diffuse APAR and beam APAR,was linearly correlated with GPP on different temporal scales.(iv)Midday adjusted LUE was closely related to daily adjusted LUE,regardless of the cloud cover.The results indicated the importance of considering radiation direction when developing LUE-based GPP-estimating models.