The Jiangchuan Biota from the Jiucheng Member(Mb.)of the Dengying Formation(Fm.),discovered in Jiangchuan,eastern Yunnan,China,is marked by copious macrofossils at the apex of the Ediacaran strata.This fauna features ...The Jiangchuan Biota from the Jiucheng Member(Mb.)of the Dengying Formation(Fm.),discovered in Jiangchuan,eastern Yunnan,China,is marked by copious macrofossils at the apex of the Ediacaran strata.This fauna features benthic algae with varied holdfasts and other fossils of indeterminate taxonomic affinity and is compositionally unique compared to the Shibantan and Gaojiashan biotas of the Dengying Fm.and the Miaohe and Wenghui biotas of the Doushantuo Fm.,elsewhere in China.One novel benthic saccular macroalgal fossil,named here Houjiashania yuxiensis gen.and sp.nov.,from the Jiangchuan Biota is based on fossils that are sausage-shaped,elongate,tubular,ranging from 0.3 to 4 cm in length,and up to 0.8 cm in diameter.One terminus is blunt and rounded to an obtuse angle,the other is bent with a spread-out surface resembling a holdfast,suggesting a three-dimensional thallus.Thin,stipe-shaped outgrowths,likely vestiges of sessile saccular life forms,are prevalent in macroalgal fossils of analogous size and shape,as well as present brown algae Scytosiphonaceae,such as Colpomenia and Dactylosiphon.The new findings augment the diversity of benthic algae,such as those known from the Early Neoproterozoic Longfengshan Biota in North China.The benthic algal macrofossils in the Jiucheng Mb.add to knowledge of Late Ediacaran metaphyte diversification and offer more clues about the evolutionary positioning of primitive macroalgae.The co-occurrence of numerous planktonic and benthic multicellular algae and planktonic microbes might have facilitated ecologically the more extensive later Cambrian explosion evidenced by the Chengjiang Biota in Yunnan.展开更多
Hypoglycemia-a critical complication linked to worsened brain function in diabetic subjects:Hypoglycemia is characterized by a decline in circulatory glucose levels below sta nda rd physiological thresholds.Mild hypog...Hypoglycemia-a critical complication linked to worsened brain function in diabetic subjects:Hypoglycemia is characterized by a decline in circulatory glucose levels below sta nda rd physiological thresholds.Mild hypoglycemia,classified as level 1 hypoglycemia,is defined by blood glucose levels below 70 mg/dL and can be effectively addressed through carbohydrate intake.Severe hypoglycemia,denoted by blood glucose levels less than 54 mg/dL,poses a life-threatening risk if left untreated.Individuals with type 1 and type 2 diabetes undergoing insulin treatment are particularly susceptible to hypoglycemia due to impaired counterregulatory mechanisms.展开更多
Bacteria play critical roles in regulating soil phosphorus(P) cycling. The effects of interactions between crops and soil P-availability on bacterial communities and the feedback regulation of soil P cycling by the ba...Bacteria play critical roles in regulating soil phosphorus(P) cycling. The effects of interactions between crops and soil P-availability on bacterial communities and the feedback regulation of soil P cycling by the bacterial community modifications are poorly understood. Here, six soybean(Glycine max) genotypes with differences in P efficiency were cultivated in acidic soils with long-term sufficient or deficient P-fertilizer treatments. The acid phosphatase(AcP) activities, organic-P concentrations and associated bacterial community compositions were determined in bulk and rhizosphere soils. The results showed that both soybean plant P content and the soil AcP activity were negatively correlated with soil organic-P concentration in P-deficient acidic soils. Soil P-availability affected the ɑ-diversity of bacteria in both bulk and rhizosphere soils. However, soybean had a stronger effect on the bacterial community composition, as reflected by the similar biomarker bacteria in the rhizosphere soils in both P-treatments. The relative abundance of biomarker bacteria Proteobacteria was strongly correlated with soil organic-P concentration and AcP activity in low-P treatments. Further high-throughput sequencing of the phoC gene revealed an obvious shift in Proteobacteria groups between bulk soils and rhizosphere soils, which was emphasized by the higher relative abundances of Cupriavidus and Klebsiella, and lower relative abundance of Xanthomonas in rhizosphere soils. Among them, Cupriavidus was the dominant phoC bacterial genus, and it was negatively correlated with the soil organic-P concentration. These findings suggest that soybean growth relies on organic-P mineralization in P-deficient acidic soils, which might be partially achieved by recruiting specific phoCharboring bacteria, such as Cupriavidus.展开更多
The fruits of Dacryodes edulis are rich in biologically active substances, which makes them of great interest in terms of validation. In this study, we targeted the primary metabolites in the epicarp, the mesocarp and...The fruits of Dacryodes edulis are rich in biologically active substances, which makes them of great interest in terms of validation. In this study, we targeted the primary metabolites in the epicarp, the mesocarp and the seed of the fruit of Dacryodes edulis at taste maturity, which were selected for their nutritional quality and its appreciation throughout the Gulf of Guinea area, which is very popular because of its large size, texture and special taste. The evaluation of total carbohydrates, total lipids and soluble proteins in the epicarp, mesocarp and seed of the fruit at taste maturity was made from spectrophotometer measurements. The overall analysis of the results of the present study shows that total carbohydrates, total lipids and proteins accumulate more in the seed with respectively 251.33 ± 1.15 mg/g DM;9.92 ± 0.201 mg/g DM and 55.075 ± 0.024 mg/g DM. Likewise, the results indicate low concentrations of total carbohydrates and total lipids in the epicarp with respectively 245 ± 1 mg/g DM and 4.77 ± 0.047 mg/g DM, on the other hand, it is the mesocarp which presents the lowest content of soluble proteins: 28.075 ± 3.231 mg/g DM. This variation could be linked to the nature of the compartment, more particularly to the storage location. This comparative study could lead to the valorization of the seed of the fruit of Dacryodes edulis for its richness in metabolites and arouse significant interest in nutrition.展开更多
Objective After traumatic injury in pregnant women,providing timely and appropriate management for high-risk patients is crucial for both pregnant women and fetuses.This study aimed to identify risk factors that predi...Objective After traumatic injury in pregnant women,providing timely and appropriate management for high-risk patients is crucial for both pregnant women and fetuses.This study aimed to identify risk factors that predict adverse pregnancy outcomes after traumatic injury.Methods A retrospective cohort study including 317 pregnant patients who experienced trauma was conducted.The collected data included general demographics,injury mechanisms and adverse pregnancy outcomes.Patients were divided into two subgroups based on the absence or presence of trauma-related adverse pregnancy outcomes.Univariate and multivariate logistic regressions were conducted to estimate the associations between clinical variables and adverse pregnancy outcomes.Results A total of 41(12.93%)patients experienced adverse pregnancy outcomes within the first 24 h post-trauma.This study revealed that age>35 years(OR=14.995,95%CI:5.024–44.755,P<0.001),third trimester trauma(OR=3.878,95%CI:1.343–11.204,P=0.012),abdominal pain(OR=3.032,95%CI:1.221–7.527,P=0.017),vaginal bleeding(OR=3.226,95%CI:1.093–9.523,P=0.034),positive scan in focused assessment with sonography for trauma(FAST)positive(OR=8.496,95%CI:2.825–25.555,P<0.001),9≤injury severity score(ISS)<16(OR=3.039,95%CI:1.046–8.835,P=0.041)and ISS≥16(OR=5.553,95%CI:1.387–22.225,P=0.015)increased the probability of posttraumatic adverse pregnancy outcomes.Maternal age,gestational age at delivery,vaginal bleeding and positive FAST results were risk factors for abnormal delivery.Conclusion Advanced maternal age,third trimester,and positive FAST results should alert multidisciplinary trauma teams to closely monitor patients to prevent adverse pregnancy outcomes.展开更多
Long non-coding RNAs(lncRNAs)function as key modulators in mammalian immunity,particularly due to their involvement in lncRNA-mediated competitive endogenous RNA(ceRNA)crosstalk.Despite their recognized significance i...Long non-coding RNAs(lncRNAs)function as key modulators in mammalian immunity,particularly due to their involvement in lncRNA-mediated competitive endogenous RNA(ceRNA)crosstalk.Despite their recognized significance in mammals,research on lncRNAs in lower vertebrates remains limited.In the present study,we characterized the first immune-related lncRNA(pol-lnc78)in the teleost Japanese flounder(Paralichthys olivaceus).Results indicated that pol-lnc78 acted as a ceRNA for pol-miR-n199-3p to target the sterile alpha and armadillo motif-containing protein(SARM),the fifth discovered member of the Toll/interleukin 1(IL-1)receptor(TIR)adaptor family.This ceRNA network regulated the antibacterial responses of flounder via the Toll-like receptor(TLR)signaling pathway.Specifically,SARM acted as a negative regulator and exacerbated bacterial infection by inhibiting the expression of inflammatory cytokines IL-1βand tumor necrosis factor-α(TNF-α).Pol-miR-n199-3p reduced SARM expression by specifically interacting with the 3’untranslated region(UTR),thereby promoting SARM-dependent inflammatory cytokine expression and protecting the host against bacterial dissemination.Furthermore,pol-lnc78 sponged pol-miR-n199-3p to ameliorate the inhibition of SARM expression.During infection,the negative regulators pol-lnc78 and SARM were significantly down-regulated,while pol-miR-n199-3p was significantly up-regulated,thus favoring host antibacterial defense.These findings provide novel insights into the mechanisms underlying fish immunity and open new horizons to better understand ceRNA crosstalk in lower vertebrates.展开更多
Objective:To investigate the frequency of exoU and exoY genes in patients with Pseudomonas aeruginosa infection.Methods:In this study,100 clinical isolates of Pseudomonas aeruginosa were collected from patients hospit...Objective:To investigate the frequency of exoU and exoY genes in patients with Pseudomonas aeruginosa infection.Methods:In this study,100 clinical isolates of Pseudomonas aeruginosa were collected from patients hospitalized in educational-therapeutic hospitals and were identified using standard microbiological tests.Then,the antibiotic resistance pattern of the isolates was determined by the disk agar diffusion method.The bacterial DNAs were extracted by the alkaline lysis method.Finally,the presence of exoU and exoY genes was evaluated by the PCR test.Results:In this study,47%,72%,29%,39%,40%,and 44%of the isolates were non-susceptible to piperacillin,aztreonam,ceftazidime,imipenem,tobramycin,and ciprofloxacin,respectively.In addition,95%and 93%of the clinical isolates carried the exoU and exoY genes.Blood and fecal isolates had both virulence genes,while only one wound isolate had neither genes.Meanwhile,all urinary isolates contained the exoY gene and only one isolate lacked the exoU gene.Also,88 isolates simultaneously had both exoU and exoY genes.Conclusions:High prevalence of exoU and exoY genes in this region indicates a significant role of typeⅢsecretion system in pathogenesis of Pseudomonas aeruginosa.The typeⅢsecretion system may be a suitable target to reduce the pathogenicity of this bacterium.展开更多
Unfavorable environmental cues severely affect crop productivity resulting in significant economic losses to farmers. In plants, multiple regulatory genes, such as the WRKY transcription factor (TF) family, modulate t...Unfavorable environmental cues severely affect crop productivity resulting in significant economic losses to farmers. In plants, multiple regulatory genes, such as the WRKY transcription factor (TF) family, modulate the expression of defense genes. However, the role of the pineapple WRKY genes is poorly understood. Here, we studied the pineapple WRKY gene, AcWRKY28, by generating AcWRKY28 over-expressing transgenic pineapple plants. Overexpression of AcWRKY28 enhanced the salt stress resistance in transgenic pineapple lines. Comparative transcriptome analysis of transgenic and wild-type pineapple plants showed that “plant-pathogen interaction” pathway genes, including 9calcium-dependent protein kinases (CPKs), were up-regulated in AcWRKY28 over-expressing plants. Furthermore, chromatin immunoprecipitation and yeast one-hybrid assays revealed AcCPK12, AcCPK3, AcCPK8, AcCPK1, and AcCPK15 as direct targets of AcWRKY28. Consistently, the study of AcCPK12 over-expressing Arabidopsis lines showed that AcCPK12 enhances salt, drought, and disease resistance. This study shows that AcWRKY28 plays a crucial role in promoting salt stress resistance by activating the expression of AcCPK genes.展开更多
The improvements of high-throughput experimental devices such as microarray and mass spectrometry have allowed an effective acquisition of biological comprehensive data which include genome, transcriptome, proteome, a...The improvements of high-throughput experimental devices such as microarray and mass spectrometry have allowed an effective acquisition of biological comprehensive data which include genome, transcriptome, proteome, and metabolome (multi-layered omics data). In Systems Biology, we try to elucidate various dynamical characteristics of biological functions with applying the omics data to detailed mathematical model based on the central dogma. However, such mathematical models possess multi-time-scale properties which are often accompanied by time-scale differences seen among biological layers. The differences cause time stiff problem, and have a grave influence on numerical calculation stability. In the present conventional method, the time stiff problem remained because the calculation of all layers was implemented by adaptive time step sizes of the smallest time-scale layer to ensure stability and maintain calculation accuracy. In this paper, we designed and developed an effective numerical calculation method to improve the time stiff problem. This method consisted of ahead, backward, and cumulative algorithms. Both ahead and cumulative algorithms enhanced calculation efficiency of numerical calculations via adjustments of step sizes of each layer, and reduced the number of numerical calculations required for multi-time-scale models with the time stiff problem. Backward algorithm ensured calculation accuracy in the multi-time-scale models. In case studies which were focused on three layers system with 60 times difference in time-scale order in between layers, a proposed method had almost the same calculation accuracy compared with the conventional method in spite of a reduction of the total amount of the number of numerical calculations. Accordingly, the proposed method is useful in a numerical analysis of multi-time-scale models with time stiff problem.展开更多
Organism development is a systems level process. It has benefited greatly from the recent technological advances in the field of systems biology. DNA microarray, phenome, interactome and transcriptome mapping, the new...Organism development is a systems level process. It has benefited greatly from the recent technological advances in the field of systems biology. DNA microarray, phenome, interactome and transcriptome mapping, the new generation of deep sequencing technologies, and faster and better computational and modeling approaches have opened new frontiers for both systems biologists and developmental biologists to reexamine the old developmental biology questions, such as pattern formation, and to tackle new problems, such as stem cell reprogramming. As showcased in the International Developmental Systems Biology Symposium organized by Chinese Academy of Sciences, developmental systems biology is flourishing in many perspectives, from the evolution of developmental systems, to the underlying genetic and molecular pathways and networks, to the genomic, epigenomic and noncoding levels, to the computational analysis and modeling. We believe that the field will continue to reap rewards into the future with these new approaches.展开更多
Our ability to learn and remember depends on the active formation,remodeling,and elimination of synapses.Thus,the development and growth of synapses as well as their weakening and elimination are essential for neurona...Our ability to learn and remember depends on the active formation,remodeling,and elimination of synapses.Thus,the development and growth of synapses as well as their weakening and elimination are essential for neuronal rewiring.The structural reorganization of synaptic complexes,changes in actin cytos keleton and organelle dynamics,as well as modulation of gene expression,determine synaptic plasticity.It has been proposed that dys regulation of these key synaptic homeostatic processes underlies the synaptic dysfunction observed in many neurodegenerative diseases.Much is known about downstream signaling of activated N-methyl-D-aspartate andα-amino-3-hydroxy-5-methyl-4-isoazolepro pionate receptors;howeve r,other signaling pathways can also contribute to synaptic plasticity and long-lasting changes in learning and memory.The non-receptor tyrosine kinase c-Abl(ABL1)is a key signal transducer of intra and extracellular signals,and it shuttles between the cyto plasm and the nucleus.This review focuses on c-Abl and its synaptic and neuronal functions.Here,we discuss the evidence showing that the activation of c-Abl can be detrimental to neurons,promoting the development of neurodegenerative diseases.Nevertheless,c-Abl activity seems to be in a pivotal balance between healthy synaptic plasticity,regulating dendritic spines remodeling and gene expression after cognitive training,and synaptic dysfunction and loss in neurodegenerative diseases.Thus,c-Abl genetic ablation not only improves learning and memory and modulates the brain genetic program of trained mice,but its absence provides dendritic spines resiliency against damage.Therefo re,the present review has been designed to elu cidate the common links between c-Abl regulation of structural changes that involve the actin cytos keleton and organelles dynamics,and the transc riptional program activated during synaptic plasticity.By summarizing the recent discove ries on c-Abl functions,we aim to provide an overview of how its inhibition co uld be a potentially fruitful treatment to improve degenerative outcomes and delay memory loss.展开更多
Viral infections have led to many public health crises and pandemics in the last few centuries.Neurotropic virus infection-induced viral encephalitis(VE),especially the symptomatic inflammation of the meninges and bra...Viral infections have led to many public health crises and pandemics in the last few centuries.Neurotropic virus infection-induced viral encephalitis(VE),especially the symptomatic inflammation of the meninges and brain parenchyma,has attracted growing attention due to its high mortality and disability rates.Understanding the infectious routes of neurotropic viruses and the mechanism underlying the host immune response is critical to reduce viral spread and improve antiviral therapy outcomes.In this review,we summarize the common categories of neurotropic viruses,viral transmission routes in the body,host immune responses,and experimental animal models used for VE study to gain a deeper understanding of recent progress in the pathogenic and immunological mechanisms under neurotropic viral infection.This review should provide valuable resources and perspectives on how to cope with pandemic infections.展开更多
Today,self-healing graphene-and MXene-based composites have attracted researchers due to the increase in durability as well as the cost reduction in long-time applications.Different studies have focused on designing n...Today,self-healing graphene-and MXene-based composites have attracted researchers due to the increase in durability as well as the cost reduction in long-time applications.Different studies have focused on designing novel self-healing graphene-and MXenebased composites with enhanced sensitivity,stretchability,and flexibility as well as improved electrical conductivity,healing efficacy,mechanical properties,and energy conversion efficacy.These composites with self-healing properties can be employed in the field of wearable sensors,supercapacitors,anticorrosive coatings,electromagnetic interference shielding,electronic-skin,soft robotics,etc.However,it appears that more explorations are still needed to achieve composites with excellent arbitrary shape adaptability,suitable adhesiveness,ideal durability,high stretchability,immediate self-healing responsibility,and outstanding electromagnetic features.Besides,optimizing reaction/synthesis conditions and finding suitable strategies for functionalization/modification are crucial aspects that should be comprehensively investigated.MXenes and graphene exhibited superior electrochemical properties with abundant surface terminations and great surface area,which are important to evolve biomedical and sensing applications.However,flexibility and stretchability are important criteria that need to be improved for their future applications.Herein,the most recent advancements pertaining to the applications and properties of self-healing graphene-and MXene-based composites are deliberated,focusing on crucial challenges and future perspectives.展开更多
Acid soils occupy approximately 50% of potentially arable lands.Improving crop productivity in acid soils,therefore,will be crucial for ensuring food security and agricultural sustainability.High soil acidity often co...Acid soils occupy approximately 50% of potentially arable lands.Improving crop productivity in acid soils,therefore,will be crucial for ensuring food security and agricultural sustainability.High soil acidity often coexists with phosphorus(P) deficiency and aluminum(Al) toxicity,a combination that severely impedes crop growth and yield across wide areas.As roots explore soil for the nutrients and water required for plant growth and development,they also sense and respond to below-ground stresses.Within the terrestrial context of widespread P deficiency and Al toxicity pressures,plants,particularly roots,have evolved a variety of mechanisms for adapting to these stresses.As legumes,soybean(Glycine max) plants may acquire nitrogen(N) through symbiotic nitrogen fixation(SNF),an adaptation that can be useful for mitigating excessive N fertilizer use,either directly as leguminous crop participants in rotation and intercropping systems,or secondarily as green manure cover crops.In this review,we investigate legumes,especially soybean,for recent advances in our understanding of root-based mechanisms linked with root architecture modification,exudation and symbiosis,together with associated genetic and molecular strategies in adaptation to individual and/or interacting P and Al conditions in acid soils.We propose that breeding legume cultivars with superior nutrient efficiency and/or Al tolerance traits through genetic selection might become a potentially powerful strategy for producing crop varieties capable of maintaining or improving yields in more stressful soil conditions subjected to increasingly challenging environmental conditions.展开更多
Nitrogen(N) and phosphorus(P) are two essential mineral nutrients for plant growth,which are required in relative high amount in plants.Plants have evolved a series of strategies for coordinately acquiring and utilizi...Nitrogen(N) and phosphorus(P) are two essential mineral nutrients for plant growth,which are required in relative high amount in plants.Plants have evolved a series of strategies for coordinately acquiring and utilizing N and P.However,physiological and molecular mechanisms underlying of N and P interactions remain largely unclear in soybean(Glycine max).In this study,interactions of N and P were demonstrated in soybean as reflected by significant increases of phosphate(Pi) concentration in both leaves and roots by N deficiency under Pi sufficient conditions.A total of four nitrogen limitation adaptation(NLA),encoding RING-type E3 ubiquitin ligase were subsequently identified in soybean genome.Among them,transcription of Gm NLA1-1 and Gm NLA1-3 was decreased in soybean by N starvation under Pi sufficient conditions,not for Gm NLA1-2.Suppression of all three Gm NLA1 members was able to increase Pi concentration regardless of the P and N availability in the growth medium,but decrease fresh weight under normal conditions in soybean hairy roots.However,comparted to changes in control lines at two N levels,N deficiency only resulted in a relatively higher increase of Pi concentration in Gm NLA1-1 or Gm NLA1-3 suppression lines,strongly indicating that Gm NLA1-1 and Gm NLA1-3 might regulate P homeostasis in soybean response to N starvation.Taken together,our result suggest that redundant and diverse functions present in Gm NLA1 members for soybean coordinate responses to P and N availability,which mediate P homeostasis.展开更多
A distinct population of skeletal stem/progenitor cells(SSPCs)has been identified that is indispensable for the maintenance and remodeling of the adult skeleton.However,the cell types that are responsible for age-rela...A distinct population of skeletal stem/progenitor cells(SSPCs)has been identified that is indispensable for the maintenance and remodeling of the adult skeleton.However,the cell types that are responsible for age-related bone loss and the characteristic changes in these cells during aging remain to be determined.Here,we established models of premature aging by conditional depletion of Zmpste24(Z24)in mice and found that Prx1-dependent Z24 deletion,but not Osx-dependent Z24 deletion,caused significant bone loss.However,Acan-associated Z24 depletion caused only trabecular bone loss.Single-cell RNA sequencing(sc RNA-seq)revealed that two populations of SSPCs,one that differentiates into trabecular bone cells and another that differentiates into cortical bone cells,were significantly decreased in Prx1-Cre;Z24^(f/f)mice.Both premature SSPC populations exhibited apoptotic signaling pathway activation and decreased mechanosensation.Physical exercise reversed the effects of Z24depletion on cellular apoptosis,extracellular matrix expression and bone mass.This study identified two populations of SSPCs that are responsible for premature aging-related bone loss.The impairment of mechanosensation in Z24-deficient SSPCs provides new insight into how physical exercise can be used to prevent bone aging.展开更多
Increasing soil salinization seriously impairs plant growth and development,resulting in crop loss.The Salt-Overly-Sensitive(SOS)pathway is indispensable to the mitigation of Na+toxicity in plants under high salinity....Increasing soil salinization seriously impairs plant growth and development,resulting in crop loss.The Salt-Overly-Sensitive(SOS)pathway is indispensable to the mitigation of Na+toxicity in plants under high salinity.However,whether natural variations of SOS2 contribute to salt tolerance has not been reported.Here a natural variation in the SlSOS2 promoter region was identified to be associated with root Na+/K+ratio and the loss of salt resistance during tomato domestication.This natural variation contains an ABI4-binding cis-element and plays an important role in the repression of SlSOS2 expression.Genetic evidence revealed that SlSOS2 mutations increase root Na+/K+ratio under salt stress conditions and thus attenuate salt resistance in tomato.Together,our findings uncovered a critical but previously unknown natural variation of SOS2 in salt resistance,which provides valuable natural resources for genetic breeding for salt resistance in cultivated tomatoes and other crops.展开更多
Glycogen,amino acids,fatty acids,and other nutrient components affect the flavor and nutritional quality of oysters.Methods based on near-infrared reflectance spectroscopy(NIRS)were developed to rapidly and proximatel...Glycogen,amino acids,fatty acids,and other nutrient components affect the flavor and nutritional quality of oysters.Methods based on near-infrared reflectance spectroscopy(NIRS)were developed to rapidly and proximately determine the nutrient content of the Pacific oyster Crassostreagigas.Samples of C.gigas from 19 costal sites were freeze-dried,ground,and scanned for spectral data collection using a Fourier transform NIR spectrometer(Thermo Fisher Scientific).NIRS models of glycogen and other nutrients were established using partial least squares,multiplication scattering correction first-order derivation,and Norris smoothing.The R_(C) values of the glycogen,fatty acids,amino acids,and taurine NIRS models were 0.9678,0.9312,0.9132,and 0.8928,respectively,and the residual prediction deviation(RPD)values of these components were 3.15,2.16,3.11,and 1.59,respectively,indicating a high correlation between the predicted and observed values,and that the models can be used in practice.The models were used to evaluate the nutrient compositions of 1278 oyster samples.Glycogen content was found to be positively correlated with fatty acids and negatively correlated with amino acids.The glycogen,amino acid,and taurine levels of C.gigas cultured in the subtidal and intertidal zones were also significantly different.This study suggests that C.gigas NIRS models can be a cost-effective alternative to traditional methods for the rapid and proximate analysis of various slaughter traits and may also contribute to future genetic and breeding-related studies in Pacific oysters.展开更多
In growing children,growth plate cartilage has limited self-repair ability upon fracture injury always leading to limb growth arrest.Interestingly,one type of fracture injuries within the growth plate achieve amazing ...In growing children,growth plate cartilage has limited self-repair ability upon fracture injury always leading to limb growth arrest.Interestingly,one type of fracture injuries within the growth plate achieve amazing self-healing,however,the mechanism is unclear.Using this type of fracture mouse model,we discovered the activation of Hedgehog(Hh)signaling in the injured growth plate,which could activate chondrocytes in growth plate and promote cartilage repair.展开更多
A full understanding of adaptive genetic variation at the genomic level will help address questions of how organisms adapt to diverse climates.Actinidia eriantha is a shade-tolerant species,widely distributed in the s...A full understanding of adaptive genetic variation at the genomic level will help address questions of how organisms adapt to diverse climates.Actinidia eriantha is a shade-tolerant species,widely distributed in the southern tropical region of China,occurring in spatially heterogeneous environments.In the present study we combined population genomic,epigenomic,and environmental association analyses to infer population genetic structure and positive selection across a climatic gradient,and to assess genomic offset to climatic change for A.eriantha.The population structure is strongly shaped by geography and influenced by restricted gene f low resulting from isolation by distance due to habitat fragmentation.In total,we identified 102 outlier loci and annotated 455 candidate genes associated with the genomic basis of climate adaptation,which were enriched in functional categories related to development processes and stress response;both temperature and precipitation are important factors driving adaptive variation.In addition to single-nucleotide polymorphisms(SNPs),a total of 27 single-methylation variants(SMVs)had significant correlation with at least one of four climatic variables and 16 SMVswere located in or adjacent to genes,several of whichwere predicted to be involved in plant response to abiotic or biotic stress.Gradient forest analysis indicated that the central/east populations were predicted to be at higher risk of future population maladaptation under climate change.Our results demonstrate that local climate factors impose strong selection pressures and lead to local adaptation.Such information adds to our understanding of adaptive mechanisms to variable climates revealed by both population genome and epigenome analysis.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.42172035,42062005 and 41572024)the China Geological Survey(Grant No.DD20221648)+1 种基金Yunnan Province Science and Technology Department(Grant No.202305AD160031,202401AT070012)the project entitled 1:50000 Regional Geological Survey of Dazhuang,Fabiao,Ditu,and Dianzhong Sheets in Yunnan Province(Grant No.D202207).
文摘The Jiangchuan Biota from the Jiucheng Member(Mb.)of the Dengying Formation(Fm.),discovered in Jiangchuan,eastern Yunnan,China,is marked by copious macrofossils at the apex of the Ediacaran strata.This fauna features benthic algae with varied holdfasts and other fossils of indeterminate taxonomic affinity and is compositionally unique compared to the Shibantan and Gaojiashan biotas of the Dengying Fm.and the Miaohe and Wenghui biotas of the Doushantuo Fm.,elsewhere in China.One novel benthic saccular macroalgal fossil,named here Houjiashania yuxiensis gen.and sp.nov.,from the Jiangchuan Biota is based on fossils that are sausage-shaped,elongate,tubular,ranging from 0.3 to 4 cm in length,and up to 0.8 cm in diameter.One terminus is blunt and rounded to an obtuse angle,the other is bent with a spread-out surface resembling a holdfast,suggesting a three-dimensional thallus.Thin,stipe-shaped outgrowths,likely vestiges of sessile saccular life forms,are prevalent in macroalgal fossils of analogous size and shape,as well as present brown algae Scytosiphonaceae,such as Colpomenia and Dactylosiphon.The new findings augment the diversity of benthic algae,such as those known from the Early Neoproterozoic Longfengshan Biota in North China.The benthic algal macrofossils in the Jiucheng Mb.add to knowledge of Late Ediacaran metaphyte diversification and offer more clues about the evolutionary positioning of primitive macroalgae.The co-occurrence of numerous planktonic and benthic multicellular algae and planktonic microbes might have facilitated ecologically the more extensive later Cambrian explosion evidenced by the Chengjiang Biota in Yunnan.
基金generously supported by the faculty startup funds from Auburn University at Montgomery (to SSVPS)。
文摘Hypoglycemia-a critical complication linked to worsened brain function in diabetic subjects:Hypoglycemia is characterized by a decline in circulatory glucose levels below sta nda rd physiological thresholds.Mild hypoglycemia,classified as level 1 hypoglycemia,is defined by blood glucose levels below 70 mg/dL and can be effectively addressed through carbohydrate intake.Severe hypoglycemia,denoted by blood glucose levels less than 54 mg/dL,poses a life-threatening risk if left untreated.Individuals with type 1 and type 2 diabetes undergoing insulin treatment are particularly susceptible to hypoglycemia due to impaired counterregulatory mechanisms.
基金This work was supported by grants from the National Key Research and Development Program of China(2021YFF1000500)the Open Competition Program of Ten Major Directions of Agricultural Science and Technology Innovation for the 14th Five-Year Plan of Guangdong Province,China(2022SDZG07)+3 种基金the Key Areas Research and Development Programs of Guangdong Province,China(2022B0202060005)the STICGrantof China(SGDX20210823103535007)the Major Program of Guangdong Basic and Applied Research,China(2019B030302006)the Natural Science Foundation of Guangdong Province,China(2021A1515010826and 2020A1515110261).
文摘Bacteria play critical roles in regulating soil phosphorus(P) cycling. The effects of interactions between crops and soil P-availability on bacterial communities and the feedback regulation of soil P cycling by the bacterial community modifications are poorly understood. Here, six soybean(Glycine max) genotypes with differences in P efficiency were cultivated in acidic soils with long-term sufficient or deficient P-fertilizer treatments. The acid phosphatase(AcP) activities, organic-P concentrations and associated bacterial community compositions were determined in bulk and rhizosphere soils. The results showed that both soybean plant P content and the soil AcP activity were negatively correlated with soil organic-P concentration in P-deficient acidic soils. Soil P-availability affected the ɑ-diversity of bacteria in both bulk and rhizosphere soils. However, soybean had a stronger effect on the bacterial community composition, as reflected by the similar biomarker bacteria in the rhizosphere soils in both P-treatments. The relative abundance of biomarker bacteria Proteobacteria was strongly correlated with soil organic-P concentration and AcP activity in low-P treatments. Further high-throughput sequencing of the phoC gene revealed an obvious shift in Proteobacteria groups between bulk soils and rhizosphere soils, which was emphasized by the higher relative abundances of Cupriavidus and Klebsiella, and lower relative abundance of Xanthomonas in rhizosphere soils. Among them, Cupriavidus was the dominant phoC bacterial genus, and it was negatively correlated with the soil organic-P concentration. These findings suggest that soybean growth relies on organic-P mineralization in P-deficient acidic soils, which might be partially achieved by recruiting specific phoCharboring bacteria, such as Cupriavidus.
文摘The fruits of Dacryodes edulis are rich in biologically active substances, which makes them of great interest in terms of validation. In this study, we targeted the primary metabolites in the epicarp, the mesocarp and the seed of the fruit of Dacryodes edulis at taste maturity, which were selected for their nutritional quality and its appreciation throughout the Gulf of Guinea area, which is very popular because of its large size, texture and special taste. The evaluation of total carbohydrates, total lipids and soluble proteins in the epicarp, mesocarp and seed of the fruit at taste maturity was made from spectrophotometer measurements. The overall analysis of the results of the present study shows that total carbohydrates, total lipids and proteins accumulate more in the seed with respectively 251.33 ± 1.15 mg/g DM;9.92 ± 0.201 mg/g DM and 55.075 ± 0.024 mg/g DM. Likewise, the results indicate low concentrations of total carbohydrates and total lipids in the epicarp with respectively 245 ± 1 mg/g DM and 4.77 ± 0.047 mg/g DM, on the other hand, it is the mesocarp which presents the lowest content of soluble proteins: 28.075 ± 3.231 mg/g DM. This variation could be linked to the nature of the compartment, more particularly to the storage location. This comparative study could lead to the valorization of the seed of the fruit of Dacryodes edulis for its richness in metabolites and arouse significant interest in nutrition.
文摘Objective After traumatic injury in pregnant women,providing timely and appropriate management for high-risk patients is crucial for both pregnant women and fetuses.This study aimed to identify risk factors that predict adverse pregnancy outcomes after traumatic injury.Methods A retrospective cohort study including 317 pregnant patients who experienced trauma was conducted.The collected data included general demographics,injury mechanisms and adverse pregnancy outcomes.Patients were divided into two subgroups based on the absence or presence of trauma-related adverse pregnancy outcomes.Univariate and multivariate logistic regressions were conducted to estimate the associations between clinical variables and adverse pregnancy outcomes.Results A total of 41(12.93%)patients experienced adverse pregnancy outcomes within the first 24 h post-trauma.This study revealed that age>35 years(OR=14.995,95%CI:5.024–44.755,P<0.001),third trimester trauma(OR=3.878,95%CI:1.343–11.204,P=0.012),abdominal pain(OR=3.032,95%CI:1.221–7.527,P=0.017),vaginal bleeding(OR=3.226,95%CI:1.093–9.523,P=0.034),positive scan in focused assessment with sonography for trauma(FAST)positive(OR=8.496,95%CI:2.825–25.555,P<0.001),9≤injury severity score(ISS)<16(OR=3.039,95%CI:1.046–8.835,P=0.041)and ISS≥16(OR=5.553,95%CI:1.387–22.225,P=0.015)increased the probability of posttraumatic adverse pregnancy outcomes.Maternal age,gestational age at delivery,vaginal bleeding and positive FAST results were risk factors for abnormal delivery.Conclusion Advanced maternal age,third trimester,and positive FAST results should alert multidisciplinary trauma teams to closely monitor patients to prevent adverse pregnancy outcomes.
基金supported by the National Natural Science Foundation of China(42006082)Natural Science Foundation of Jiangsu Province of China(BK20221323)+1 种基金“JBGS”Project of Seed Industry Revitalization in Jiangsu Province(JBGS[2021]034)State Key Laboratory of Developmental Biology of Freshwater Fish(2021KF009)。
文摘Long non-coding RNAs(lncRNAs)function as key modulators in mammalian immunity,particularly due to their involvement in lncRNA-mediated competitive endogenous RNA(ceRNA)crosstalk.Despite their recognized significance in mammals,research on lncRNAs in lower vertebrates remains limited.In the present study,we characterized the first immune-related lncRNA(pol-lnc78)in the teleost Japanese flounder(Paralichthys olivaceus).Results indicated that pol-lnc78 acted as a ceRNA for pol-miR-n199-3p to target the sterile alpha and armadillo motif-containing protein(SARM),the fifth discovered member of the Toll/interleukin 1(IL-1)receptor(TIR)adaptor family.This ceRNA network regulated the antibacterial responses of flounder via the Toll-like receptor(TLR)signaling pathway.Specifically,SARM acted as a negative regulator and exacerbated bacterial infection by inhibiting the expression of inflammatory cytokines IL-1βand tumor necrosis factor-α(TNF-α).Pol-miR-n199-3p reduced SARM expression by specifically interacting with the 3’untranslated region(UTR),thereby promoting SARM-dependent inflammatory cytokine expression and protecting the host against bacterial dissemination.Furthermore,pol-lnc78 sponged pol-miR-n199-3p to ameliorate the inhibition of SARM expression.During infection,the negative regulators pol-lnc78 and SARM were significantly down-regulated,while pol-miR-n199-3p was significantly up-regulated,thus favoring host antibacterial defense.These findings provide novel insights into the mechanisms underlying fish immunity and open new horizons to better understand ceRNA crosstalk in lower vertebrates.
文摘Objective:To investigate the frequency of exoU and exoY genes in patients with Pseudomonas aeruginosa infection.Methods:In this study,100 clinical isolates of Pseudomonas aeruginosa were collected from patients hospitalized in educational-therapeutic hospitals and were identified using standard microbiological tests.Then,the antibiotic resistance pattern of the isolates was determined by the disk agar diffusion method.The bacterial DNAs were extracted by the alkaline lysis method.Finally,the presence of exoU and exoY genes was evaluated by the PCR test.Results:In this study,47%,72%,29%,39%,40%,and 44%of the isolates were non-susceptible to piperacillin,aztreonam,ceftazidime,imipenem,tobramycin,and ciprofloxacin,respectively.In addition,95%and 93%of the clinical isolates carried the exoU and exoY genes.Blood and fecal isolates had both virulence genes,while only one wound isolate had neither genes.Meanwhile,all urinary isolates contained the exoY gene and only one isolate lacked the exoU gene.Also,88 isolates simultaneously had both exoU and exoY genes.Conclusions:High prevalence of exoU and exoY genes in this region indicates a significant role of typeⅢsecretion system in pathogenesis of Pseudomonas aeruginosa.The typeⅢsecretion system may be a suitable target to reduce the pathogenicity of this bacterium.
基金supported by the Natural Science Foundation of Guangxi (Grant No.2022GXNSFBA035523)the China Postdoctoral Science Foundation (Grant No.2022MD713731)+1 种基金the Science and Technology Major Project of Guangxi Gui Ke (Grant No.AA22067096)the project of Guangxi featured fruit innovation team on pineapple breeding and cultivation post under national modern agricultural industry technology system (Grant No.nycytxgxcxtd-17-05)。
文摘Unfavorable environmental cues severely affect crop productivity resulting in significant economic losses to farmers. In plants, multiple regulatory genes, such as the WRKY transcription factor (TF) family, modulate the expression of defense genes. However, the role of the pineapple WRKY genes is poorly understood. Here, we studied the pineapple WRKY gene, AcWRKY28, by generating AcWRKY28 over-expressing transgenic pineapple plants. Overexpression of AcWRKY28 enhanced the salt stress resistance in transgenic pineapple lines. Comparative transcriptome analysis of transgenic and wild-type pineapple plants showed that “plant-pathogen interaction” pathway genes, including 9calcium-dependent protein kinases (CPKs), were up-regulated in AcWRKY28 over-expressing plants. Furthermore, chromatin immunoprecipitation and yeast one-hybrid assays revealed AcCPK12, AcCPK3, AcCPK8, AcCPK1, and AcCPK15 as direct targets of AcWRKY28. Consistently, the study of AcCPK12 over-expressing Arabidopsis lines showed that AcCPK12 enhances salt, drought, and disease resistance. This study shows that AcWRKY28 plays a crucial role in promoting salt stress resistance by activating the expression of AcCPK genes.
文摘The improvements of high-throughput experimental devices such as microarray and mass spectrometry have allowed an effective acquisition of biological comprehensive data which include genome, transcriptome, proteome, and metabolome (multi-layered omics data). In Systems Biology, we try to elucidate various dynamical characteristics of biological functions with applying the omics data to detailed mathematical model based on the central dogma. However, such mathematical models possess multi-time-scale properties which are often accompanied by time-scale differences seen among biological layers. The differences cause time stiff problem, and have a grave influence on numerical calculation stability. In the present conventional method, the time stiff problem remained because the calculation of all layers was implemented by adaptive time step sizes of the smallest time-scale layer to ensure stability and maintain calculation accuracy. In this paper, we designed and developed an effective numerical calculation method to improve the time stiff problem. This method consisted of ahead, backward, and cumulative algorithms. Both ahead and cumulative algorithms enhanced calculation efficiency of numerical calculations via adjustments of step sizes of each layer, and reduced the number of numerical calculations required for multi-time-scale models with the time stiff problem. Backward algorithm ensured calculation accuracy in the multi-time-scale models. In case studies which were focused on three layers system with 60 times difference in time-scale order in between layers, a proposed method had almost the same calculation accuracy compared with the conventional method in spite of a reduction of the total amount of the number of numerical calculations. Accordingly, the proposed method is useful in a numerical analysis of multi-time-scale models with time stiff problem.
基金the China National Science Foundation (NSF) (No. 30588001, 30620120433)National Basic Research Program of China (No. 2006CB910700)funds from the Chinese Acad-emy of Sciences to J.-D.J.H. and NSF fellowship to T.A.
文摘Organism development is a systems level process. It has benefited greatly from the recent technological advances in the field of systems biology. DNA microarray, phenome, interactome and transcriptome mapping, the new generation of deep sequencing technologies, and faster and better computational and modeling approaches have opened new frontiers for both systems biologists and developmental biologists to reexamine the old developmental biology questions, such as pattern formation, and to tackle new problems, such as stem cell reprogramming. As showcased in the International Developmental Systems Biology Symposium organized by Chinese Academy of Sciences, developmental systems biology is flourishing in many perspectives, from the evolution of developmental systems, to the underlying genetic and molecular pathways and networks, to the genomic, epigenomic and noncoding levels, to the computational analysis and modeling. We believe that the field will continue to reap rewards into the future with these new approaches.
基金supported by Comisión Nacional de Investigación Cientifica y Tecnologica-Chile Fondecyt 12011668(to ARA)Fondecyt 1190334(to SZ)+6 种基金Fondecyt 11200592(to MJY)Fondef ID21/10347(to ARA andSZ)Fondef D10E1077(to ARA and SZ)CARE-UCAFB 170005(to ARA)MSCA-RISE-2016-Lysomod-734825 European Union's Horizon 2020Research and Innovation Program under the Marie Sklodowska-Curie grant agreement N°953489(to SZ)Millennium Science Initiative Program-ICN09_016/ICN 2021_045(to ARA)。
文摘Our ability to learn and remember depends on the active formation,remodeling,and elimination of synapses.Thus,the development and growth of synapses as well as their weakening and elimination are essential for neuronal rewiring.The structural reorganization of synaptic complexes,changes in actin cytos keleton and organelle dynamics,as well as modulation of gene expression,determine synaptic plasticity.It has been proposed that dys regulation of these key synaptic homeostatic processes underlies the synaptic dysfunction observed in many neurodegenerative diseases.Much is known about downstream signaling of activated N-methyl-D-aspartate andα-amino-3-hydroxy-5-methyl-4-isoazolepro pionate receptors;howeve r,other signaling pathways can also contribute to synaptic plasticity and long-lasting changes in learning and memory.The non-receptor tyrosine kinase c-Abl(ABL1)is a key signal transducer of intra and extracellular signals,and it shuttles between the cyto plasm and the nucleus.This review focuses on c-Abl and its synaptic and neuronal functions.Here,we discuss the evidence showing that the activation of c-Abl can be detrimental to neurons,promoting the development of neurodegenerative diseases.Nevertheless,c-Abl activity seems to be in a pivotal balance between healthy synaptic plasticity,regulating dendritic spines remodeling and gene expression after cognitive training,and synaptic dysfunction and loss in neurodegenerative diseases.Thus,c-Abl genetic ablation not only improves learning and memory and modulates the brain genetic program of trained mice,but its absence provides dendritic spines resiliency against damage.Therefo re,the present review has been designed to elu cidate the common links between c-Abl regulation of structural changes that involve the actin cytos keleton and organelles dynamics,and the transc riptional program activated during synaptic plasticity.By summarizing the recent discove ries on c-Abl functions,we aim to provide an overview of how its inhibition co uld be a potentially fruitful treatment to improve degenerative outcomes and delay memory loss.
基金supported by the National Natural Science Foundation of China(81825011,81930038,81961160738)Program of Shanghai Academic/Technology Research Leader(22XD1400800)Strategic Priority Research Program of the Chinese Academy of Sciences(XDB19030200)。
文摘Viral infections have led to many public health crises and pandemics in the last few centuries.Neurotropic virus infection-induced viral encephalitis(VE),especially the symptomatic inflammation of the meninges and brain parenchyma,has attracted growing attention due to its high mortality and disability rates.Understanding the infectious routes of neurotropic viruses and the mechanism underlying the host immune response is critical to reduce viral spread and improve antiviral therapy outcomes.In this review,we summarize the common categories of neurotropic viruses,viral transmission routes in the body,host immune responses,and experimental animal models used for VE study to gain a deeper understanding of recent progress in the pathogenic and immunological mechanisms under neurotropic viral infection.This review should provide valuable resources and perspectives on how to cope with pandemic infections.
文摘Today,self-healing graphene-and MXene-based composites have attracted researchers due to the increase in durability as well as the cost reduction in long-time applications.Different studies have focused on designing novel self-healing graphene-and MXenebased composites with enhanced sensitivity,stretchability,and flexibility as well as improved electrical conductivity,healing efficacy,mechanical properties,and energy conversion efficacy.These composites with self-healing properties can be employed in the field of wearable sensors,supercapacitors,anticorrosive coatings,electromagnetic interference shielding,electronic-skin,soft robotics,etc.However,it appears that more explorations are still needed to achieve composites with excellent arbitrary shape adaptability,suitable adhesiveness,ideal durability,high stretchability,immediate self-healing responsibility,and outstanding electromagnetic features.Besides,optimizing reaction/synthesis conditions and finding suitable strategies for functionalization/modification are crucial aspects that should be comprehensively investigated.MXenes and graphene exhibited superior electrochemical properties with abundant surface terminations and great surface area,which are important to evolve biomedical and sensing applications.However,flexibility and stretchability are important criteria that need to be improved for their future applications.Herein,the most recent advancements pertaining to the applications and properties of self-healing graphene-and MXene-based composites are deliberated,focusing on crucial challenges and future perspectives.
基金financially supported by the National Natural Science Foundation of China (32072661)the National Key Research and Development Program of China(2021YFF1000500)。
文摘Acid soils occupy approximately 50% of potentially arable lands.Improving crop productivity in acid soils,therefore,will be crucial for ensuring food security and agricultural sustainability.High soil acidity often coexists with phosphorus(P) deficiency and aluminum(Al) toxicity,a combination that severely impedes crop growth and yield across wide areas.As roots explore soil for the nutrients and water required for plant growth and development,they also sense and respond to below-ground stresses.Within the terrestrial context of widespread P deficiency and Al toxicity pressures,plants,particularly roots,have evolved a variety of mechanisms for adapting to these stresses.As legumes,soybean(Glycine max) plants may acquire nitrogen(N) through symbiotic nitrogen fixation(SNF),an adaptation that can be useful for mitigating excessive N fertilizer use,either directly as leguminous crop participants in rotation and intercropping systems,or secondarily as green manure cover crops.In this review,we investigate legumes,especially soybean,for recent advances in our understanding of root-based mechanisms linked with root architecture modification,exudation and symbiosis,together with associated genetic and molecular strategies in adaptation to individual and/or interacting P and Al conditions in acid soils.We propose that breeding legume cultivars with superior nutrient efficiency and/or Al tolerance traits through genetic selection might become a potentially powerful strategy for producing crop varieties capable of maintaining or improving yields in more stressful soil conditions subjected to increasingly challenging environmental conditions.
基金supported by the National Key Research and Development Program of China (2021YFF1000500)Major Program of Guangdong Basic and Applied Research (2019B030302006)+2 种基金the National Natural Science Foundation of China (32172659,32172658, 31872164)the STIC Grant (SGDX20210823103535007)the Natural Science Foundation of Guangdong Province of China(2021A1515010826, 2020A1515110261)。
文摘Nitrogen(N) and phosphorus(P) are two essential mineral nutrients for plant growth,which are required in relative high amount in plants.Plants have evolved a series of strategies for coordinately acquiring and utilizing N and P.However,physiological and molecular mechanisms underlying of N and P interactions remain largely unclear in soybean(Glycine max).In this study,interactions of N and P were demonstrated in soybean as reflected by significant increases of phosphate(Pi) concentration in both leaves and roots by N deficiency under Pi sufficient conditions.A total of four nitrogen limitation adaptation(NLA),encoding RING-type E3 ubiquitin ligase were subsequently identified in soybean genome.Among them,transcription of Gm NLA1-1 and Gm NLA1-3 was decreased in soybean by N starvation under Pi sufficient conditions,not for Gm NLA1-2.Suppression of all three Gm NLA1 members was able to increase Pi concentration regardless of the P and N availability in the growth medium,but decrease fresh weight under normal conditions in soybean hairy roots.However,comparted to changes in control lines at two N levels,N deficiency only resulted in a relatively higher increase of Pi concentration in Gm NLA1-1 or Gm NLA1-3 suppression lines,strongly indicating that Gm NLA1-1 and Gm NLA1-3 might regulate P homeostasis in soybean response to N starvation.Taken together,our result suggest that redundant and diverse functions present in Gm NLA1 members for soybean coordinate responses to P and N availability,which mediate P homeostasis.
基金supported by the National Natural Science Foundation of China (NSFC) (82230082,81991512 to W.Z.,82202742 to J.S.,82070108 to R.Y.)the National Key Research and Development Program of China (2022YFA0806600 to W.Z.,2022YFA1103200 to R.Y.)CAS Project for Young Scientists in Basic Research (YSBR077 to W.Z.)。
文摘A distinct population of skeletal stem/progenitor cells(SSPCs)has been identified that is indispensable for the maintenance and remodeling of the adult skeleton.However,the cell types that are responsible for age-related bone loss and the characteristic changes in these cells during aging remain to be determined.Here,we established models of premature aging by conditional depletion of Zmpste24(Z24)in mice and found that Prx1-dependent Z24 deletion,but not Osx-dependent Z24 deletion,caused significant bone loss.However,Acan-associated Z24 depletion caused only trabecular bone loss.Single-cell RNA sequencing(sc RNA-seq)revealed that two populations of SSPCs,one that differentiates into trabecular bone cells and another that differentiates into cortical bone cells,were significantly decreased in Prx1-Cre;Z24^(f/f)mice.Both premature SSPC populations exhibited apoptotic signaling pathway activation and decreased mechanosensation.Physical exercise reversed the effects of Z24depletion on cellular apoptosis,extracellular matrix expression and bone mass.This study identified two populations of SSPCs that are responsible for premature aging-related bone loss.The impairment of mechanosensation in Z24-deficient SSPCs provides new insight into how physical exercise can be used to prevent bone aging.
基金This work was supported by the National Natural Science Foun-dation of China(grant 32000206 to Z.W.)the Natural Science Foundation of Anhui Province(grant 2208085Y08 to Z.W.).
文摘Increasing soil salinization seriously impairs plant growth and development,resulting in crop loss.The Salt-Overly-Sensitive(SOS)pathway is indispensable to the mitigation of Na+toxicity in plants under high salinity.However,whether natural variations of SOS2 contribute to salt tolerance has not been reported.Here a natural variation in the SlSOS2 promoter region was identified to be associated with root Na+/K+ratio and the loss of salt resistance during tomato domestication.This natural variation contains an ABI4-binding cis-element and plays an important role in the repression of SlSOS2 expression.Genetic evidence revealed that SlSOS2 mutations increase root Na+/K+ratio under salt stress conditions and thus attenuate salt resistance in tomato.Together,our findings uncovered a critical but previously unknown natural variation of SOS2 in salt resistance,which provides valuable natural resources for genetic breeding for salt resistance in cultivated tomatoes and other crops.
基金Supported by the Shandong Province Key R&D Program Project(No.2021LZGC029)the Major Scientific and Technological Innovation Project of Shandong Province(No.2019JZZY010813)+2 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDA24030105)the Qingdao Key Technology and Industrialization Demonstration Project(No.22-3-3-hygg-2-hy)the Earmarked Fund for China Agriculture Research System(No.CARS-49)。
文摘Glycogen,amino acids,fatty acids,and other nutrient components affect the flavor and nutritional quality of oysters.Methods based on near-infrared reflectance spectroscopy(NIRS)were developed to rapidly and proximately determine the nutrient content of the Pacific oyster Crassostreagigas.Samples of C.gigas from 19 costal sites were freeze-dried,ground,and scanned for spectral data collection using a Fourier transform NIR spectrometer(Thermo Fisher Scientific).NIRS models of glycogen and other nutrients were established using partial least squares,multiplication scattering correction first-order derivation,and Norris smoothing.The R_(C) values of the glycogen,fatty acids,amino acids,and taurine NIRS models were 0.9678,0.9312,0.9132,and 0.8928,respectively,and the residual prediction deviation(RPD)values of these components were 3.15,2.16,3.11,and 1.59,respectively,indicating a high correlation between the predicted and observed values,and that the models can be used in practice.The models were used to evaluate the nutrient compositions of 1278 oyster samples.Glycogen content was found to be positively correlated with fatty acids and negatively correlated with amino acids.The glycogen,amino acid,and taurine levels of C.gigas cultured in the subtidal and intertidal zones were also significantly different.This study suggests that C.gigas NIRS models can be a cost-effective alternative to traditional methods for the rapid and proximate analysis of various slaughter traits and may also contribute to future genetic and breeding-related studies in Pacific oysters.
基金supported by grants from the National Key R&D Program of China(2022YFA1103200)National Natural Science Foundation Projects of China(81822012,82061130222,81771043,92049201,82001070)+1 种基金Shanghai Academic Leader of Science and Technology Innovation Action Plan(20XD1424000)the Shanghai Experimental Animal Research Project of Science and Technology Innovation Action Plan(8191101676,201409006400)。
文摘In growing children,growth plate cartilage has limited self-repair ability upon fracture injury always leading to limb growth arrest.Interestingly,one type of fracture injuries within the growth plate achieve amazing self-healing,however,the mechanism is unclear.Using this type of fracture mouse model,we discovered the activation of Hedgehog(Hh)signaling in the injured growth plate,which could activate chondrocytes in growth plate and promote cartilage repair.
基金funded by the National Natural Science Foundation of China(grants 31770374 and 32070377)the Key Projects of the Joint Fund of the National Natural Science Foundation of China(grant U1802232).
文摘A full understanding of adaptive genetic variation at the genomic level will help address questions of how organisms adapt to diverse climates.Actinidia eriantha is a shade-tolerant species,widely distributed in the southern tropical region of China,occurring in spatially heterogeneous environments.In the present study we combined population genomic,epigenomic,and environmental association analyses to infer population genetic structure and positive selection across a climatic gradient,and to assess genomic offset to climatic change for A.eriantha.The population structure is strongly shaped by geography and influenced by restricted gene f low resulting from isolation by distance due to habitat fragmentation.In total,we identified 102 outlier loci and annotated 455 candidate genes associated with the genomic basis of climate adaptation,which were enriched in functional categories related to development processes and stress response;both temperature and precipitation are important factors driving adaptive variation.In addition to single-nucleotide polymorphisms(SNPs),a total of 27 single-methylation variants(SMVs)had significant correlation with at least one of four climatic variables and 16 SMVswere located in or adjacent to genes,several of whichwere predicted to be involved in plant response to abiotic or biotic stress.Gradient forest analysis indicated that the central/east populations were predicted to be at higher risk of future population maladaptation under climate change.Our results demonstrate that local climate factors impose strong selection pressures and lead to local adaptation.Such information adds to our understanding of adaptive mechanisms to variable climates revealed by both population genome and epigenome analysis.