期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
One-year water-ageing of calcium phosphate composite containing nano-silver and quaternary ammonium to inhibit biofilms 被引量:8
1
作者 Lei Cheng Ke Zhang +3 位作者 Chen-Chen Zhou Michael D Weir Xue-Dong Zhou Hockin HK Xu 《International Journal of Oral Science》 SCIE CAS CSCD 2016年第3期172-181,共10页
Dental composites are commonly used restorative materials; however, secondary caries due to biofilm acids remains a major problem. The objectives of this study were (1) to develop a composite containing quaternary a... Dental composites are commonly used restorative materials; however, secondary caries due to biofilm acids remains a major problem. The objectives of this study were (1) to develop a composite containing quaternary ammonium dimethacrylate (QADM), nanoparticles of silver (NAg), and nanoparticles of amorphous calcium phosphate (NACP), and (2) to conduct the first investigation of the mechanical properties, biofilm response and acid production vs water-ageing time from 1 day to 12 months. A 4 x 5 design was utilized, with four composites (NACP-QADM composite, NACP-NAg composite, NACP-QADM-NAg composite, and a commercial control composite), and five water-ageing time periods (1 day, and 3, 6, 9, and 12 months). After each water- ageing period, the mechanical properties of the resins were measured in a three-point flexure, and antibacterial properties were tested via a dental plaque biofilm model using human saliva as an inoculum. After 12 months of water-ageing, NACP-QADM- NAg had a flexural strength and elastic modulus matching those of the commercial control (P〉 0.1). Incorporation of QADM or NAg into the NACP composite greatly reduced biofilm viability, metabolic activity and acid production. A composite containing both QADM and NAg possessed a stronger antibacterial capability than one with QADM or NAg alone (P〈0.05). The anti-biofilm activity was maintained after 12 months of water-ageing and showed no significant decrease with increasing time (P〉0.1). In conclusion, the NACP-QADM-NAg composite decreased biofilm viability and lactic acid production, while matching the load- bearing capability of a commercial composite. There was no decrease in its antibacterial properties after 1 year of water-ageing. The durable antibacterial and mechanical properties indicate that NACP-QADM-NAg composites may be useful in dental restorations to combat caries. 展开更多
关键词 antibacterial composite calcium phosphate nanoparticles human saliva microcosm biofilm long-term durability quaternaryammonium silver nanoparticles
下载PDF
Effect of anti-biofilm glass–ionomer cement on Streptococcus mutans biofilms 被引量:7
2
作者 Su-Ping Wang Yang Ge +8 位作者 Xue-Dong Zhou Hockin HK Xu Michael D Weir Ke-Ke Zhang Hao-Hao Wang Matthias Hannig Stefan Rupf Qian Li Lei Cheng 《International Journal of Oral Science》 SCIE CAS CSCD 2016年第2期76-83,共8页
Dental restorative materials with antimicrobial properties can inhibit bacterial colonization, which may result in a reduction of caries at tooth-filling interaction zones. This study aimed to develop antibacterial gl... Dental restorative materials with antimicrobial properties can inhibit bacterial colonization, which may result in a reduction of caries at tooth-filling interaction zones. This study aimed to develop antibacterial glass-ionomer cements (GIC) containing a quaternary ammonium monomer (dimethylaminododecyl methacrylate, DMADDM), and to investigate their effect on material performance and antibacterial properties. Different mass fractions (0, 1.1% and 2.2%) of DMADDM were incorporated into the GIC. The flexure strength, surface charge density, surface roughness and fluoride release were tested. A Streptococcus mutans biofilm model was used. Exopolysaccharides (EPS) staining was used to analyze the inhibitory effect of DMADDM on the biofilm matrix. In addition, biofilm metabolic activity, lactic acid metabolism and the expression of glucosyltransferase genes g/fB, gtfC and gtfD were measured. GIC containing 1.1% and 2.2% DMADDM had flexural strengths matching those of the commercial control (P〉0.1). DMADDM was able to increase the surface charge density but reduced surface roughness (P〈0.05). The incorporation of 1.1% and 2.2% DMADDM elevated the release of fluoride by the GIC in the first 2 days (P〈0.05). The novel DMADDM-modified GIC significantly reduced biofilm metabolic activity (P〈 0.05) and decreased lactic acid production (P〈 0.05). The quantitative polymerase chain reaction (qPCR) results showed that the expression of gtfB, g/fC and gtfD decreased when mass fractions of DMADDM increased (P〈0.05). EPS staining showed that both the bacteria and EPS in biofilm decreased in the DMADDM groups. The incorporation of DMADDM could modify the properties of GIC to influence the development of S. mutans biofilms. In this study, we investigated the interface properties of antibacterial materials for the first time. GIC containing DMADDM can improve material performance and antibacterial properties and may contribute to the better management of secondary caries. 展开更多
关键词 antibacterial properties dimethylaminododecyl methacrylate glass-ionomer cement material performance Streptococcusmutans biofilms
下载PDF
Novel rechargeable calcium phosphate nanoparticle-containing orthodontic cement 被引量:4
3
作者 Xian-Ju Xie Dan Xing +4 位作者 Lin Wang Han Zhou Michael D Weir Yu-Xing Bai Hockin HK Xu 《International Journal of Oral Science》 SCIE CAS CSCD 2017年第1期24-32,共9页
White spot lesions (WSLs), due to enamel demineralization, occur frequently in orthodontic treatment. We recently developed a novel rechargeable dental composite containing nanoparticles of amorphous calcium phospha... White spot lesions (WSLs), due to enamel demineralization, occur frequently in orthodontic treatment. We recently developed a novel rechargeable dental composite containing nanoparticles of amorphous calcium phosphate (NACP) with long-term calcium (Ca) and phosphate (P) ion release and caries-inhibiting capability. The objectives of this study were to develop the first NACP- rechargeable orthodontic cement and investigate the effects of recharge duration and frequency on the efficacy of ion re-release. The rechargeable cement consisted of pyromellitic glycerol dimethacrylate (PMGDM) and ethoxylated bisphenol A dimethacrylate (EBPADMA). NACP was mixed into the resin at 40% by mass. Specimens were tested for orthodontic bracket shear bond strength (SBS) to enamel, Ca and P ion initial release, recharge and re-release. The new orthodontic cement exhibited an SBS similar to commercial orthodontic cement without CaP release (P〉 0.1). Specimens after one recharge treatment (e.g., 1 min immersion in recharge solution repeating three times in one day, referred to as "1 min 3 times") exhibited a substantial and continuous re-release of Ca and P ions for 14 days without further recharge. The ion re-release did not decrease with increasing the number of recharge/re-release cycles (P〉 0.1). The ion re-release concentrations at 14 days versus various recharge treatments were as follows: 1 min 3 times〉3 min 2 times〉 1 min 2 times〉6 min 1 time〉3 min 1 time〉 1 min 1 time. In conclusion, although previous studies have shown that NACP nanocomposite remineralized tooth lesions and inhibited caries, the present study developed the first orthodontic cement with Ca and P ion recharge and long-term release capability. This NACP-rechargeable orthodontic cement is a promising therapy to inhibit enamel demineralization and WSLs around orthodontic brackets. 展开更多
关键词 bond strength calcium phosphate nanoparticles calcium phosphate ion rechargeability long-term ion release orthodonticcement white spot lesions
下载PDF
A novel protein-repellent dental composite containing 2-methacryloyloxyethyl phosphorylcholine 被引量:8
4
作者 Ning Zhang Chen Chen +3 位作者 Mary AS Melo Yu-Xing Bai Lei Cheng Hockin HK Xu 《International Journal of Oral Science》 SCIE CAS CSCD 2015年第2期103-109,共7页
Secondary caries due to biofilm acids is a primary cause of dental composite restoration failure.To date,there have been no reports of dental composites that can repel protein adsorption and inhibit bacteria attachmen... Secondary caries due to biofilm acids is a primary cause of dental composite restoration failure.To date,there have been no reports of dental composites that can repel protein adsorption and inhibit bacteria attachment.The objectives of this study were to develop a protein-repellent dental composite by incorporating 2-methacryloyloxyethyl phosphorylcholine(MPC) and to investigate for the first time the effects of MPC mass fraction on protein adsorption,bacteria attachment,biofilm growth,and mechanical properties.Composites were synthesized with 0(control),0.75%,1.5%,2.25%,3%,4.5%and 6%of MPC by mass.A commercial composite was also tested as a control.Mechanical properties were measured in three-point flexure.Protein adsorption onto the composite was determined by the microbicinchoninic acid method.A human saliva microcosm biofilm model was used.Early attachment at 4 h,biofilm at 2 days,live/dead staining and colony-forming units(CFUs) of biofilms grown on the composites were investigated.Composites with MPC of up to 3%had mechanical properties similar to those without MPC and those of the commercial control,whereas 4.5%and 6%MPC decreased the mechanical properties(P〈0.05).Increasing MPC from 0 to 3%reduced the protein adsorption on composites(P〈0.05).The composite with 3%MPC had protein adsorption that was 1/12 that of the control(P〈0.05).Oral bacteria early attachment and biofilm growth were also greatly reduced on the composite with 3%MPC,compared to the control(P〈0.05).In conclusion,incorporation of MPC into composites at 3%greatly reduced protein adsorption,bacteria attachment and biofilm CFUs,without compromising mechanical properties.Protein-repellent composites could help to repel bacteria attachment and plaque build-up to reduce secondary caries.The protein-repellent method might be applicable to other dental materials. 展开更多
关键词 biofilm dental attachment caries antibacterial phospholipid ammonium deviation applicable sorption
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部