Current lithium-ion batteries(LIBs)rely on organic liquid electrolytes that pose significant risks due to their flammability and toxicity.The potential for environmental pollution and explosions resulting from battery...Current lithium-ion batteries(LIBs)rely on organic liquid electrolytes that pose significant risks due to their flammability and toxicity.The potential for environmental pollution and explosions resulting from battery damage or fracture is a critical concern.Water-based(aqueous)electrolytes have been receiving attention as an alternative to organic electrolytes.However,a narrow electrochemicalstability window,water decomposition,and the consequent low battery operating voltage and energy density hinder the practical use of aqueous electrolytes.Therefore,developing novel aqueous electrolytes for sustainable,safe,high-performance LIBs remains challenging.This Review first commences by summarizing the roles and requirements of electrolytes–separators and then delineates the progression of aqueous electrolytes for LIBs,encompassing aqueous liquid and gel electrolyte development trends along with detailed principles of the electrolytes.These aqueous electrolytes are progressed based on strategies using superconcentrated salts,concentrated diluents,polymer additives,polymer networks,and artificial passivation layers,which are used for suppressing water decomposition and widening the electrochemical stability window of water of the electrolytes.In addition,this Review discusses potential strategies for the implementation of aqueous Li-metal batteries with improved electrolyte–electrode interfaces.A comprehensive understanding of each strategy in the aqueous system will assist in the design of an aqueous electrolyte and the development of sustainable and safe high-performance batteries.展开更多
Three-dimensional(3D)bioprinting,an effective technique for building cell-laden structures providing native extracellular matrix environments,presents challenges,including inadequate cellular interactions.To address t...Three-dimensional(3D)bioprinting,an effective technique for building cell-laden structures providing native extracellular matrix environments,presents challenges,including inadequate cellular interactions.To address these issues,cell spheroids offer a promising solution for improving their biological functions.Particularly,minispheroids with 50-100μm diameters exhibit enhanced cellular maturation.We propose a one-step minispheroid-forming bioprinting process incorporating electrical stimulation(E-MS-printing).By stimulating the cells,minispheroids with controlled diameters were generated by manipulating the bioink viscosity and stimulation intensity.To validate its feasibility,E-MS-printing process was applied to fabricate an engineered liver model designed to mimic the hepatic lobule unit.E-MS-printing was employed to print the hepatocyte region,followed by bioprinting the central vein using a core-shell nozzle.The resulting constructs displayed native liver-mimetic structures containing minispheroids,which facilitated improved hepatic cell maturation,functional attributes,and vessel formation.Our results demonstrate a new potential 3D liver model that can replicate native liver tissues.展开更多
Volumetric muscle loss(VML)is associated with a severe loss of muscle tissue that overwhelms the regenerative potential of skeletal muscles.Tissue engineering has shown promise for the treatment of VML injuries,as evi...Volumetric muscle loss(VML)is associated with a severe loss of muscle tissue that overwhelms the regenerative potential of skeletal muscles.Tissue engineering has shown promise for the treatment of VML injuries,as evidenced by various preclinical trials.The present study describes the fabrication of a cell-laden GelMa muscle construct using an in situ crosslinking(ISC)strategy to improve muscle functionality.To obtain optimal biophysical properties of the muscle construct,two UV exposure sources,UV exposure dose,and wall shear stress were evaluated using C2C12 myoblasts.Additionally,the ISC system showed a significantly higher degree of uniaxial alignment and myogenesis compared to the conventional crosslinking strategy(post-crosslinking).To evaluate the in vivo regenerative potential,muscle constructs laden with human adipose stem cells were used.The VML defect group implanted with the bio-printed muscle construct showed significant restoration of functionality and muscular volume.The data presented in this study suggest that stem cell-based therapies combined with the modified bioprinting process could potentially be effective against VML injuries.展开更多
Intracerebral hemorrhage (ICH), caused by the sudden rupture of an artery within the brain, is a devastating subtype of stroke, which currently has no effective treatment. Intense inflammatory reactions that occur i...Intracerebral hemorrhage (ICH), caused by the sudden rupture of an artery within the brain, is a devastating subtype of stroke, which currently has no effective treatment. Intense inflammatory reactions that occur in the peri-hematomal area after ICH are more deleterious than the hematoma itself, resulting in subsequent brain edema and neurologic deterioration. Thus, we developed lipid-coated magnetic mesoporous silica nanoparticles doped with ceria nanoparticles (CeNPs), abbreviated as LMCs, which have both potent anti-inflammatory therapeutic effects via scavenging reactive oxygen species and help in increasing the efficacy of magnetic resonance imaging enhancement in the peri-hematomal area. LMCs consist of mesoporous silica nanopartide-supported lipid bilayers, which are loaded with large amounts of CeNPs for scavenging of reactive oxygen species, and iron oxide nanoparticles for magnetic resonance imaging contrast. LMCs loaded with CeNPs exhibited strong anti-oxidative and anti-inflammatory activities in vitro. In the rodent ICH model, intracerebraUy injected LMCs reached the peri-hematomal area and were engulfed by macrophages, which were clearly visualized by magnetic resonance imaging of the brain. Moreover, LMCs reduced inflammatory macrophage infiltration, and thus significantly reduced brain edema. Finally, LMC treatment markedly improved neurologic outcomes of the animals with ICH. Thus, LMC is the first nanobiomaterial that successfully showed theragnostic effects in ICH.展开更多
Sterol regulatory element binding protein-2(SREBP-2)is activated by cytokines or pathogen,such as virus or bacteria,but its association with diminished cholesterol levels in COVID-19 patients is unknown.Here,we evalua...Sterol regulatory element binding protein-2(SREBP-2)is activated by cytokines or pathogen,such as virus or bacteria,but its association with diminished cholesterol levels in COVID-19 patients is unknown.Here,we evaluated SREBP-2 activation in peripheral blood mononuclear cells of COVID-19 patients and verified the function of SREBP-2 in COVID-19.Intriguingly,we report the first observation of SREBP-2 C-terminal fragment in COVID-19 patients’blood and propose SREBP-2 C-terminal fragment as an indicator for determining severity.We confirmed that SREBP-2-induced cholesterol biosynthesis was suppressed by Sestrin-1 and PCSK9 expression,while the SREBP-2-induced inflammatory responses was upregulated in COVID-19 ICU patients.Using an infectious disease mouse model,inhibitors of SREBP-2 and NF-κB suppressed cytokine storms caused by viral infection and prevented pulmonary damages.These results collectively suggest that SREBP-2 can serve as an indicator for severity diagnosis and therapeutic target for preventing cytokine storm and lung damage in severe COVID-19 patients.展开更多
基金the National Research Foundation(NRF)of Korea(No.2022R1A2B5B02002097),funded by the Korea government(MSIT).
文摘Current lithium-ion batteries(LIBs)rely on organic liquid electrolytes that pose significant risks due to their flammability and toxicity.The potential for environmental pollution and explosions resulting from battery damage or fracture is a critical concern.Water-based(aqueous)electrolytes have been receiving attention as an alternative to organic electrolytes.However,a narrow electrochemicalstability window,water decomposition,and the consequent low battery operating voltage and energy density hinder the practical use of aqueous electrolytes.Therefore,developing novel aqueous electrolytes for sustainable,safe,high-performance LIBs remains challenging.This Review first commences by summarizing the roles and requirements of electrolytes–separators and then delineates the progression of aqueous electrolytes for LIBs,encompassing aqueous liquid and gel electrolyte development trends along with detailed principles of the electrolytes.These aqueous electrolytes are progressed based on strategies using superconcentrated salts,concentrated diluents,polymer additives,polymer networks,and artificial passivation layers,which are used for suppressing water decomposition and widening the electrochemical stability window of water of the electrolytes.In addition,this Review discusses potential strategies for the implementation of aqueous Li-metal batteries with improved electrolyte–electrode interfaces.A comprehensive understanding of each strategy in the aqueous system will assist in the design of an aqueous electrolyte and the development of sustainable and safe high-performance batteries.
基金supported by a grant from the Ministry of Trade,Industry&Energy(MOTIE,Korea)under Industrial Technology Innovation Program(20009652:Technology on commercialization and materials of Bioabsorbable Hydroxyapatite less than 1μm in size)supported by the“Korea National Institute of Health”research project(2022ER130501).
文摘Three-dimensional(3D)bioprinting,an effective technique for building cell-laden structures providing native extracellular matrix environments,presents challenges,including inadequate cellular interactions.To address these issues,cell spheroids offer a promising solution for improving their biological functions.Particularly,minispheroids with 50-100μm diameters exhibit enhanced cellular maturation.We propose a one-step minispheroid-forming bioprinting process incorporating electrical stimulation(E-MS-printing).By stimulating the cells,minispheroids with controlled diameters were generated by manipulating the bioink viscosity and stimulation intensity.To validate its feasibility,E-MS-printing process was applied to fabricate an engineered liver model designed to mimic the hepatic lobule unit.E-MS-printing was employed to print the hepatocyte region,followed by bioprinting the central vein using a core-shell nozzle.The resulting constructs displayed native liver-mimetic structures containing minispheroids,which facilitated improved hepatic cell maturation,functional attributes,and vessel formation.Our results demonstrate a new potential 3D liver model that can replicate native liver tissues.
基金supported by a grant from the National Research Foundation of Korea funded by the Ministry of education,Science,and Technology(MEST)(Grant NRF-2018R1A2B2005263)supported by the National Research Foundation of Korea(NRF)Grant funded by the Ministry of Science and ICT for Bioinspired Innovation Technology Development Project(NRF-2018M3C1B7021997)supported by a grant from the Ministry of Trade,Industry&Energy(MOTIE,Korea)under Industrial Technology Innovation Program(20009652:Technology on commercialization and materials of Bioabsorbable Hydroxyapatite that is less than micrometer in size).
文摘Volumetric muscle loss(VML)is associated with a severe loss of muscle tissue that overwhelms the regenerative potential of skeletal muscles.Tissue engineering has shown promise for the treatment of VML injuries,as evidenced by various preclinical trials.The present study describes the fabrication of a cell-laden GelMa muscle construct using an in situ crosslinking(ISC)strategy to improve muscle functionality.To obtain optimal biophysical properties of the muscle construct,two UV exposure sources,UV exposure dose,and wall shear stress were evaluated using C2C12 myoblasts.Additionally,the ISC system showed a significantly higher degree of uniaxial alignment and myogenesis compared to the conventional crosslinking strategy(post-crosslinking).To evaluate the in vivo regenerative potential,muscle constructs laden with human adipose stem cells were used.The VML defect group implanted with the bio-printed muscle construct showed significant restoration of functionality and muscular volume.The data presented in this study suggest that stem cell-based therapies combined with the modified bioprinting process could potentially be effective against VML injuries.
文摘Intracerebral hemorrhage (ICH), caused by the sudden rupture of an artery within the brain, is a devastating subtype of stroke, which currently has no effective treatment. Intense inflammatory reactions that occur in the peri-hematomal area after ICH are more deleterious than the hematoma itself, resulting in subsequent brain edema and neurologic deterioration. Thus, we developed lipid-coated magnetic mesoporous silica nanoparticles doped with ceria nanoparticles (CeNPs), abbreviated as LMCs, which have both potent anti-inflammatory therapeutic effects via scavenging reactive oxygen species and help in increasing the efficacy of magnetic resonance imaging enhancement in the peri-hematomal area. LMCs consist of mesoporous silica nanopartide-supported lipid bilayers, which are loaded with large amounts of CeNPs for scavenging of reactive oxygen species, and iron oxide nanoparticles for magnetic resonance imaging contrast. LMCs loaded with CeNPs exhibited strong anti-oxidative and anti-inflammatory activities in vitro. In the rodent ICH model, intracerebraUy injected LMCs reached the peri-hematomal area and were engulfed by macrophages, which were clearly visualized by magnetic resonance imaging of the brain. Moreover, LMCs reduced inflammatory macrophage infiltration, and thus significantly reduced brain edema. Finally, LMC treatment markedly improved neurologic outcomes of the animals with ICH. Thus, LMC is the first nanobiomaterial that successfully showed theragnostic effects in ICH.
基金supported by grants from the National Research Foundation of Korea(NRF)funded by the KRIBB Research Initiative Program(OGM4391913 and KGM5391911)supported by a grant from the National Research Foundation of Korea(NRF)funded by the Korean Government(MSIT)(grant no.2018R1A2A3075013,2019R1C1C1006300,2019R1A4A1028700,2020R1A4A4079817,and 2020R1A2C1004131)+2 种基金the Ministry of Education(NRF-2018R1D1A1B07050422)supported by KIST Institutional Program(2V07950)supported by a grant of the Korea Health Technology R&D Project through the Korea Health Industry Development Institute(KHIDI),funded by the Ministry of Health&Welfare,Republic of Korea(grant no.HI15C0001).
文摘Sterol regulatory element binding protein-2(SREBP-2)is activated by cytokines or pathogen,such as virus or bacteria,but its association with diminished cholesterol levels in COVID-19 patients is unknown.Here,we evaluated SREBP-2 activation in peripheral blood mononuclear cells of COVID-19 patients and verified the function of SREBP-2 in COVID-19.Intriguingly,we report the first observation of SREBP-2 C-terminal fragment in COVID-19 patients’blood and propose SREBP-2 C-terminal fragment as an indicator for determining severity.We confirmed that SREBP-2-induced cholesterol biosynthesis was suppressed by Sestrin-1 and PCSK9 expression,while the SREBP-2-induced inflammatory responses was upregulated in COVID-19 ICU patients.Using an infectious disease mouse model,inhibitors of SREBP-2 and NF-κB suppressed cytokine storms caused by viral infection and prevented pulmonary damages.These results collectively suggest that SREBP-2 can serve as an indicator for severity diagnosis and therapeutic target for preventing cytokine storm and lung damage in severe COVID-19 patients.