Enzymatic sensors have inherent problems such as the low stability and limited pH range in industrial and biomedical applications and therefore,more efficient nonenzymatic sensors are highly desirable.Herein,plasmafun...Enzymatic sensors have inherent problems such as the low stability and limited pH range in industrial and biomedical applications and therefore,more efficient nonenzymatic sensors are highly desirable.Herein,plasmafunctionalized defective MoSe_(2)is prepared and studied as a highly efficient catalyst for electrochemical sensing of H_(2)O_(2).Experiments and theoretical computations show that the plasma-induced Se multi-vacancies and nitrogen dopants generate new active sites,expose more edge active surfaces,narrow the bandgap,and strengthen binding with the·OH intermediate,which imparts new fundamental knowledge about the roles of defects in catalysis.The defective MoSe_(2)-catalyzed sensor delivers competitive performance in hydrogen peroxide detection such as a low detection limit of 12.6 nmol/L,wide operational pH range of 1−13,good long-term stability,and high selectivity.The portable sensor produced by screen printing confirms the excellent commercial potential and in addition,the results not only reveal a novel concept to design and fabricate high-performance sensors for H_(2)_(O2)but also provide insights into the effectiveness of surface modification of diverse catalytic materials.展开更多
基金Hong Kong Research Grants Council(RGC),Grant/Award Numbers:17210219,T21‐711/16‐RChina Postdoctoral Science Foundation,Grant/Award Number:2020M680178City University of Hong Kong,Grant/Award Number:7005505。
文摘Enzymatic sensors have inherent problems such as the low stability and limited pH range in industrial and biomedical applications and therefore,more efficient nonenzymatic sensors are highly desirable.Herein,plasmafunctionalized defective MoSe_(2)is prepared and studied as a highly efficient catalyst for electrochemical sensing of H_(2)O_(2).Experiments and theoretical computations show that the plasma-induced Se multi-vacancies and nitrogen dopants generate new active sites,expose more edge active surfaces,narrow the bandgap,and strengthen binding with the·OH intermediate,which imparts new fundamental knowledge about the roles of defects in catalysis.The defective MoSe_(2)-catalyzed sensor delivers competitive performance in hydrogen peroxide detection such as a low detection limit of 12.6 nmol/L,wide operational pH range of 1−13,good long-term stability,and high selectivity.The portable sensor produced by screen printing confirms the excellent commercial potential and in addition,the results not only reveal a novel concept to design and fabricate high-performance sensors for H_(2)_(O2)but also provide insights into the effectiveness of surface modification of diverse catalytic materials.