The Melanophila acuminata beetle is attracted to forest fires via a pair of infrared sensory organs composed of sensilla. Our histological work showed that each sensillum contains lipid layers surrounding a protein la...The Melanophila acuminata beetle is attracted to forest fires via a pair of infrared sensory organs composed of sensilla. Our histological work showed that each sensillum contains lipid layers surrounding a protein layer and a unique polysaccharide base that is associated with a neuron to each sensillum. Infrared microscopy showed that the protein region maximally absorbs infrared radiation at 3 ~tm wavelength and at 10 ~tm, which corresponds to the known radiation produced by forest fires at 3 ~tm. Mathematical calculations showed that the physical properties of the sensilla are such that the expected temperature rise is insufficient for transduction of the infrared signal through mechanical means or as a thermal receptor as previously thought; hence the protein plays the pivotal role in perception of single photons and transmission of the signal within the sensilla.展开更多
文摘The Melanophila acuminata beetle is attracted to forest fires via a pair of infrared sensory organs composed of sensilla. Our histological work showed that each sensillum contains lipid layers surrounding a protein layer and a unique polysaccharide base that is associated with a neuron to each sensillum. Infrared microscopy showed that the protein region maximally absorbs infrared radiation at 3 ~tm wavelength and at 10 ~tm, which corresponds to the known radiation produced by forest fires at 3 ~tm. Mathematical calculations showed that the physical properties of the sensilla are such that the expected temperature rise is insufficient for transduction of the infrared signal through mechanical means or as a thermal receptor as previously thought; hence the protein plays the pivotal role in perception of single photons and transmission of the signal within the sensilla.