期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
On Unitary N-Dilations for Tuples of Circulant Contractions and von Neumann’s Inequality
1
作者 Joachim Moussounda Mouanda Edwige Josette Maleka Koubemba Djagwa Dehainsala 《American Journal of Computational Mathematics》 2023年第4期594-606,共13页
We introduce the spectral mapping factorization of tuples of circulant matrices and its matrix version. We prove that every tuple of circulant contractions has a unitary N-dilation. We show that von Neumann’s inequal... We introduce the spectral mapping factorization of tuples of circulant matrices and its matrix version. We prove that every tuple of circulant contractions has a unitary N-dilation. We show that von Neumann’s inequality holds for tuples of circulant contractions. We construct completely contractive homomorphisms over the algebra of complex polynomials defined on . 展开更多
关键词 DILATIONS POLYNOMIALS Matrices
下载PDF
On Kadison’s Similarity Problem for Homomorphisms of the Algebra of Complex Polynomials 被引量:1
2
作者 Joachim Moussounda Mouanda 《Advances in Pure Mathematics》 2021年第9期755-770,共16页
We prove that every homomorphism of the algebra P<sub><em>n</em></sub> into the algebra of operators on a Hilbert space is completely bounded. We show that the contractive homomorphism introduc... We prove that every homomorphism of the algebra P<sub><em>n</em></sub> into the algebra of operators on a Hilbert space is completely bounded. We show that the contractive homomorphism introduced by Parrott, which is not completely contractive, is completely bounded (similar to a completely contractive homomorphism). We also show that homomorphisms of the algebra <span style="white-space:normal;">P</span><sub style="white-space:normal;"><em>n</em></sub> generate completely positive maps over the algebras <em>C</em>(T<sup><em>n</em></sup>)and <em>M</em><sub>2</sub>(<em>C</em>(T<sup><em>n</em></sup>)). 展开更多
关键词 Inequalities for Sums Fourier Coefficients Operator Theory POLYNOMIALS
下载PDF
On Fermat’s Last Theorem and Galaxies of Sequences of Positive Integers
3
作者 Joachim Moussounda Mouanda 《American Journal of Computational Mathematics》 2022年第1期162-189,共28页
We construct sequences of positive integers which are solutions of the equation x<sup>2</sup>+y<sup>2</sup>=z<sup>2</sup>. We introduce Mouanda’s choice functions which allow us to... We construct sequences of positive integers which are solutions of the equation x<sup>2</sup>+y<sup>2</sup>=z<sup>2</sup>. We introduce Mouanda’s choice functions which allow us to construct galaxies of sequences of positive integers. We give many examples of galaxies of numbers. We show that the equation x<sup>2n</sup>+y<sup>2n</sup>=z<sup>2n</sup> (n ≥2) has no integer solutions. We prove that the equation x<sup>n</sup>+y<sup>n</sup>=z<sup>n</sup> (n ≥3) has no solutions in N. We introduce the notion of the planetary representation of a galaxy of numbers which allow us to predict the structure, laws of the universe and life in every planet system of every galaxy of the universe. We show that every multiverse contains a finite number of universes. 展开更多
关键词 Fermat’s Equation POLYNOMIALS Model Theory
下载PDF
On Von Neumann’s Inequality for Matrices of Complex Polynomials
4
作者 Joachim Moussounda Mouanda 《American Journal of Computational Mathematics》 2021年第4期289-303,共15页
We prove that every matrix </span><i><span style="font-family:"">F</span></i><span style="font-size:6.5pt;line-height:102%;font-family:宋体;">∈</span>... We prove that every matrix </span><i><span style="font-family:"">F</span></i><span style="font-size:6.5pt;line-height:102%;font-family:宋体;">∈</span><i><span style="font-family:"">M</span></i><sub><span style="font-family:"">k </span></sub><span style="font-family:"">(P<sub>n</sub>)</span><span style="font-family:""> is associated </span><span style="font-family:"">with</span><span style="font-family:""> </span><span style="font-family:"">the</span><span style="font-family:""> smallest positive integer </span><i><span style="font-family:"">d</span></i><span style="font-family:""> (<i>F</i>)</span><span style="font-size:8.0pt;line-height:102%;font-family:宋体;">≠</span><span style="font-family:"">1</span><span style="font-family:""> such that </span><i><span style="font-family:"">d </span></i><span style="font-family:"">(<i>F</i>)</span><span style="font-family:宋体;">‖</span><i><span style="font-family:"">F</span></i><span style="font-family:宋体;">‖</span><sub><span style="font-size:9px;line-height:102%;font-family:宋体;">∞</span></sub><span style="font-family:""> </span><span style="font-family:"">is always bigger than the sum of the operator norms of the Fourier coefficients of <i>F</i>. We establish some inequalities for matrices of complex polynomials. In application, we show that von Neumann’s inequality hold</span><span style="font-family:"">s</span><span style="font-family:""> up to the constant </span><span style="font-family:"">2<sup>n </sup></span><span style="font-family:"">for matrices of the algebra</span><span style="font-family:""> <i>M</i><sub>k </sub>(P<sub>n</sub>).</span><span style="font-family:""></span> </p> <br /> <span style="font-family:;" "=""></span> 展开更多
关键词 Fourier Coefficients Operator Theory POLYNOMIALS
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部