In this paper,we prepared the nanoparticle drug carrier system between nanoparticles chitosan and Epigallocatechin-3 O-gallate(EGCG)for breast cancer cell inhibiting application.For this drug carrier system,chitosan a...In this paper,we prepared the nanoparticle drug carrier system between nanoparticles chitosan and Epigallocatechin-3 O-gallate(EGCG)for breast cancer cell inhibiting application.For this drug carrier system,chitosan acts as a carrier and EGOG as a drug.Which were systematically characterized and thoroughly evaluated in terms of their inhibition rate and biocompatibility.We also did a cell scratch test and the result indicated that the chitosan EGCG nanoparticles have inhibitory effect on the growth of breast cancer cells.The inhibition rate could reach up to 21.91%.This work revealed that the modification of nanopartidles paved a way for specific biomedical applications.展开更多
基金the support of the National Natural Science Foundation of China(NSFC Nos.61722508 and 11305020)Nanophotonics and Biophotonics Key Laboratory of Jilin Province,P.R.China(20140622009JC)and(14GH005).
文摘In this paper,we prepared the nanoparticle drug carrier system between nanoparticles chitosan and Epigallocatechin-3 O-gallate(EGCG)for breast cancer cell inhibiting application.For this drug carrier system,chitosan acts as a carrier and EGOG as a drug.Which were systematically characterized and thoroughly evaluated in terms of their inhibition rate and biocompatibility.We also did a cell scratch test and the result indicated that the chitosan EGCG nanoparticles have inhibitory effect on the growth of breast cancer cells.The inhibition rate could reach up to 21.91%.This work revealed that the modification of nanopartidles paved a way for specific biomedical applications.