期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Application of p-y approach in analyzing pile foundations in frozen ground overlying liquefiable soils 被引量:1
1
作者 ZhaoHui Yang XiaoYu Zhang +1 位作者 XiaoXuan Ge Elmer E. Marx 《Research in Cold and Arid Regions》 CSCD 2013年第4期368-376,共9页
Two major earthquakes in Alaska, namely the 1964 Great Alaska Earthquake and the 2002 Denali Earthquake, occurred in winter seasons when the ground crust was frozen. None of the then-existing foundation types was able... Two major earthquakes in Alaska, namely the 1964 Great Alaska Earthquake and the 2002 Denali Earthquake, occurred in winter seasons when the ground crust was frozen. None of the then-existing foundation types was able to withstand the force from the lateral spreading of frozen crust. This paper presents results from the analysis of pile foundations in frozen ground overlying lique- fiable soil utilizing the Beam-on-Nonlinear-Winlder-Foundation (BNWF) (or p-y approach). P-multipliers were applied on tradi- tional sandy soil p-y curves to simulate soil strength degradation during liquefaction. Frozen soil p-y curves were constructed based on a model proposed in a recent study and the frozen soil mechanical properties obtained from testing of naturally frozen soils. Pile response results from the p-y approach were presented along with those from fluid-solid coupled Finite Element (FE) modeling for comparison purpose. Finally, the sensitivity of pile response to frozen soil parameters was investigated and a brief discussion is presented. 展开更多
关键词 frozen ground crust lateral spreading LIQUEFACTION p-y approach pile foundation
下载PDF
Analysis of Common Fatigue Details in Steel Truss Structures
2
作者 张玉玲 潘际炎 潘际銮 《Tsinghua Science and Technology》 SCIE EI CAS 2004年第5期583-588,共6页
Generally, the number of fatigue cycles, the range of the repeated stresses, and the type of the structural details are the key factors affecting fatigue in large-scale welded structures. Seven types of struc- ture ... Generally, the number of fatigue cycles, the range of the repeated stresses, and the type of the structural details are the key factors affecting fatigue in large-scale welded structures. Seven types of struc- ture details were tested using a 2000-kN hydraulic-pressure-servo fatigue machine to imitate fatigue behav- ior in modern steel-truss-structures fabricated using thicker welded steel plates and integral joint technology. The details included longitudinal edge welds, welded attachment affecting detail, integral joint, and weld re- pairs on plate edges. The fatigue damage locations show that the stress (normal or shear), the shape, and the location of the weld start and end points are three major factors reducing the fatigue strength. The test results can be used for similar large structures. 展开更多
关键词 weld steel truss fatigue detail fatigue equations fatigue sample size
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部