期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Arrival Pattern Recognition and Prediction Based on Machine Learning
1
作者 GUI Xuhao ZHANG Junfeng +1 位作者 TANG Xinmin KANG Bo 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2021年第6期927-936,共10页
A data-driven method for arrival pattern recognition and prediction is proposed to provide air traffic controllers(ATCOs)with decision support. For arrival pattern recognition,a clustering-based method is proposed to ... A data-driven method for arrival pattern recognition and prediction is proposed to provide air traffic controllers(ATCOs)with decision support. For arrival pattern recognition,a clustering-based method is proposed to cluster arrival patterns by control intentions. For arrival pattern prediction,two predictors are trained to estimate the most possible command issued by the ATCOs in a particular traffic situation. Training the arrival pattern predictor could be regarded as building an ATCOs simulator. The simulator can assign an appropriate arrival pattern for each arrival aircraft,just like real ATCOs do. Therefore,the simulator is considered to be able to provide effective advice for part of the work of ATCOs. Finally,a case study is carried out and demonstrates that the convolutional neural network(CNN)-based predictor performs better than the radom forest(RF)-based one. 展开更多
关键词 air traffic management decision support arrival scheduling deep learning convolutional neural networks
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部