The exit-hole in friction stir spot welded(FSSWed) 2024-T4 aluminum alloy joints was successfully repaired by using a three-phase secondary rectification resistance spot welding machine, which is termed as filling exi...The exit-hole in friction stir spot welded(FSSWed) 2024-T4 aluminum alloy joints was successfully repaired by using a three-phase secondary rectification resistance spot welding machine, which is termed as filling exit-hole based on resistance welding(FEBRW). The filling dynamic behavior of force was recorded by a device monitoring. Optical microscope(OM), electron backscatter diffraction(EBSD), and tensile shear tests and finite element modelling were conducted to investigate the repairing stages and bonding mechanisms of the repaired joints in detail. Results showed that exit-hole was completely filled and repaired experiencing three stages. Metallurgical bonding was achieved between plug and exit-hole wall in two forms, including melting bonding in the middle of the joints and partial diffusion bonding on both the upper and bottom of the joints. The highest tensile shear strength of the repaired joints was 7.43 kN, which was 36.3% higher than that of the as welded joints. Resistance welding paves an efficient way to repair the exit-hole in FSSWed joints.展开更多
Both spheroidal graphite iron and compacted graphite iron are used in the automotive industry. A recently proposed mixed graphite iron exhibits a microstructure between the conventional spheroidal graphite iron and co...Both spheroidal graphite iron and compacted graphite iron are used in the automotive industry. A recently proposed mixed graphite iron exhibits a microstructure between the conventional spheroidal graphite iron and compacted graphite iron. Evaluation results clearly indicate the suitability and benefits of mixed graphite iron for exhaust component applications with respect to casting, machining, mechanical, thermophysical, oxidation, and thermal fatigue properties. A new ASTM standard specification(A1095) has been created for compacted, mixed, and spheroidal graphite silicon-molybdenum iron castings. This paper attempts to outline the latest progress in mixed graphite iron published.展开更多
The slag cleaning(or matte settling) process was experimentally investigated at 1573 K using a fayalitic nickel converter slag containing spinel and matte/alloy particles.The addition of various amounts of spent potli...The slag cleaning(or matte settling) process was experimentally investigated at 1573 K using a fayalitic nickel converter slag containing spinel and matte/alloy particles.The addition of various amounts of spent potlining(SPL) was studied in terms of its influence on matte settling and the overall metal recoveries.The slags produced were characterized by scanning electron microscopy,energy-dispersive spectroscopy,and wet chemical analysis using inductively coupled plasma optical emission spectrometry.The presence of solid spinel particles in the molten slag hindered coalescence and settling of matte/alloy droplets.Matte settling was effectively promoted with the addition of as little as 2 wt% SPL because of the reduction of spinel by the carbonaceous component of the SPL.The reduced viscosity of the molten slag in the presence of SPL also contributed to the accelerated matte settling.Greater metal recoveries were achieved with larger amounts of added SPL.Fast reduction of the molten slag at 1573 K promoted the formation of highly dispersed metal particles/clusters via accelerated nucleation in the molten slag,which increased the overall slag viscosity.This increase in viscosity,when combined with rapid gas evolution from accelerated reduction reactions,led to slag foaming.展开更多
The inclusion parameters,fracture surface morphology and void growth characteristics of ten- sile and fracture toughness specimens of 2.25Cr-1Mo steels with and without rare-earth (RE)additions have been investigated ...The inclusion parameters,fracture surface morphology and void growth characteristics of ten- sile and fracture toughness specimens of 2.25Cr-1Mo steels with and without rare-earth (RE)additions have been investigated by quantitative metaltography(QTM),scanning elec- tron microscopy(SEM)and energy dispersive spectroscopy(EDS).There is a substantially higher density of inclusions in the RE-treated steel,which has lower values of fracture proper- ties including critical values of COD and J integral(δ_c and J_(IC)),fracture strain(ε_f) and Charpy V-notch energy(CVN).The fracture surface of the RE-treated steel comprises equiaxed dimples of diameters comparable with its inclusion spacing,whereas for the non-RE-treated steels,a wide range of dimple sizes is found with average diameter much smaller than the corresponding inclusion spacing.The investigation indicates that the lower values of fracture properties for the steel with RE at room temperature may be ascribed to its large content of RE-containing inclusions.展开更多
Typically, coarse dense mineral particles greater than 150 μm are difficult to float, and the recovery decreases progressively. Various physical parameters can be manipulated in an attempt to increase the recovery. T...Typically, coarse dense mineral particles greater than 150 μm are difficult to float, and the recovery decreases progressively. Various physical parameters can be manipulated in an attempt to increase the recovery. These physical parameters are the following: liberation, turbulence in the flotation cell, pH, collector, frother type and dosage. The testwork discussed in this paper was performed for a copper-molybdenum operation that is experiencing coarse particle (>150 μm) losses in the tails. This operation uses Diesel No. 2 fuel and sodium ethyl xanthate for molybdenum and copper flotation, respectively and X-133 frother. In an attempt to increase coarse particle recovery, stronger collectors (potassium amyl xanthate, Aero 249 and Aero 3501) and frothers (FrothPro 618, FrothPro 630 and FrothPro 706) were used. The analysis was performed using the Analysis of Variance (ANOVA) approach. The conditions required by the ANOVA method were met. The results showed that the collector potassium amyl xanthate (PAX) with frothers X-133 and FrothPro 630 resulted in approximately 3% increase in copper rougher recovery relative to the baseline (sodium ethyl xanthate and X-133). The collectors and frothers did not have a significant effect on molybdenum recovery within the dosage limits investigated.展开更多
This study set out to gain a deeper understanding of a fluid catalytic cracking(FCC)coprocessing approach using canola oil mixed with bitumen-derived heavy gas oil(HGO),for the production of partially-renewable gasoli...This study set out to gain a deeper understanding of a fluid catalytic cracking(FCC)coprocessing approach using canola oil mixed with bitumen-derived heavy gas oil(HGO),for the production of partially-renewable gasoline,with respect to its composition and quality.The FCC coprocessing approach may provide an alternative solution to reducing the carbon footprint and to meet government regulatory demands for renewable transportation fuels.In this study,a mixture of 15 v%canola oil in HGO was catalytically cracked with a commercial equilibrium catalyst under typical FCC conditions.Cracking experiments were performed using a bench-scale Advanced Cracking Evaluation(ACE)unit at a fixed weight hourly space velocity of 8 h^(à1),490–530C,and catalyst/oil ratios of 4–12 g/g.The total liquid product samples were injected via an automatic sampler and a prefractionator(to removet254C)into a gas chromatographic system containing a series of columns,traps,and valves designed to separate each of the hydrocarbon types.The analyzer gives detailed hydrocarbon types of à200C gasoline,classified into paraffins,iso-paraffins,olefins,naphthenes,and aromatics by carbon number up to C_(11)(C_(10)for aromatics).For a feed cracked at a given temperature,the gasoline aromatics show the highest selectivity in terms of weight percent conversion,followed by saturated iso-paraffins,saturated naphthenes,unsaturated iso-paraffins,unsaturated naphthenes,unsaturated normal paraffins,and saturated normal paraffins.As conversion increases,both aromatics and saturated iso-paraffins increase monotonically at the expense of other components.Hydrocarbon type analysis and octane numbers with variation in feed type,process severity(temperature and catalyst/oil ratio),and conversion are also presented and discussed.展开更多
This paper presents the investigation of energy and cost saving of microgeneration systems which consist of conventional, load sharing, renewable energy and hybrid-renewable energy systems application featuring single...This paper presents the investigation of energy and cost saving of microgeneration systems which consist of conventional, load sharing, renewable energy and hybrid-renewable energy systems application featuring single detached house and office buildings by implementing spreadsheet modeling. Microsoft excel is employed as the spreadsheet application in this study. The system performance of each case is calculated under typical weather of ottawa, canada. These cases are calculated and analyzed in terms of thermal/cooling load (building demand) and natural gas/electricity consumption (energy supply) as well as the financial part by involving several parameters which are initial cost, annual energy consumption cost, annual operational and maintenance cost, inflation rate, and return on investment. Moreover, a house and an office have the same geometry of 200 mE. Total of seven cases modeling are developed; Case-1- a house with boiler and chiller, Case-2- an office with boiler and chiller, Case-3-a simple sum of Case l and Case 2, Case-4- a load-sharing model, Case-5- a load-sharing with GSHP (ground source heat pump), Case-6- a load-sharing with ground source heat pump-fuel cell hybrid system (FC-GSHP)and Case-7- a load-sharing with GSHP--photovoltaic hybrid system (PVT-GSHP). As the results, it will be observed the efficiency of the load-sharing, renewable energy, hybrid-renewable energy implementation comparing to the conventional system.展开更多
Recent advances in machine learning(ML)have led to substantial performance improvement in material database benchmarks,but an excellent benchmark score may not imply good generalization performance.Here we show that M...Recent advances in machine learning(ML)have led to substantial performance improvement in material database benchmarks,but an excellent benchmark score may not imply good generalization performance.Here we show that ML models trained on Materials Project 2018 can have severely degraded performance on new compounds in Materials Project 2021 due to the distribution shift.We discuss how to foresee the issue with a few simple tools.Firstly,the uniform manifold approximation and projection(UMAP)can be used to investigate the relation between the training and test data within the feature space.Secondly,the disagreement between multiple ML models on the test data can illuminate out-of-distribution samples.We demonstrate that the UMAP-guided and query by committee acquisition strategies can greatly improve prediction accuracy by adding only 1%of the test data.We believe this work provides valuable insights for building databases and models that enable better robustness and generalizability.展开更多
基金financially supported by the National Natural Science Foundation of China (No. 51874179)。
文摘The exit-hole in friction stir spot welded(FSSWed) 2024-T4 aluminum alloy joints was successfully repaired by using a three-phase secondary rectification resistance spot welding machine, which is termed as filling exit-hole based on resistance welding(FEBRW). The filling dynamic behavior of force was recorded by a device monitoring. Optical microscope(OM), electron backscatter diffraction(EBSD), and tensile shear tests and finite element modelling were conducted to investigate the repairing stages and bonding mechanisms of the repaired joints in detail. Results showed that exit-hole was completely filled and repaired experiencing three stages. Metallurgical bonding was achieved between plug and exit-hole wall in two forms, including melting bonding in the middle of the joints and partial diffusion bonding on both the upper and bottom of the joints. The highest tensile shear strength of the repaired joints was 7.43 kN, which was 36.3% higher than that of the as welded joints. Resistance welding paves an efficient way to repair the exit-hole in FSSWed joints.
基金provided by the Natural Resources Canada through the Program of Energy Research and Development
文摘Both spheroidal graphite iron and compacted graphite iron are used in the automotive industry. A recently proposed mixed graphite iron exhibits a microstructure between the conventional spheroidal graphite iron and compacted graphite iron. Evaluation results clearly indicate the suitability and benefits of mixed graphite iron for exhaust component applications with respect to casting, machining, mechanical, thermophysical, oxidation, and thermal fatigue properties. A new ASTM standard specification(A1095) has been created for compacted, mixed, and spheroidal graphite silicon-molybdenum iron castings. This paper attempts to outline the latest progress in mixed graphite iron published.
文摘The slag cleaning(or matte settling) process was experimentally investigated at 1573 K using a fayalitic nickel converter slag containing spinel and matte/alloy particles.The addition of various amounts of spent potlining(SPL) was studied in terms of its influence on matte settling and the overall metal recoveries.The slags produced were characterized by scanning electron microscopy,energy-dispersive spectroscopy,and wet chemical analysis using inductively coupled plasma optical emission spectrometry.The presence of solid spinel particles in the molten slag hindered coalescence and settling of matte/alloy droplets.Matte settling was effectively promoted with the addition of as little as 2 wt% SPL because of the reduction of spinel by the carbonaceous component of the SPL.The reduced viscosity of the molten slag in the presence of SPL also contributed to the accelerated matte settling.Greater metal recoveries were achieved with larger amounts of added SPL.Fast reduction of the molten slag at 1573 K promoted the formation of highly dispersed metal particles/clusters via accelerated nucleation in the molten slag,which increased the overall slag viscosity.This increase in viscosity,when combined with rapid gas evolution from accelerated reduction reactions,led to slag foaming.
文摘The inclusion parameters,fracture surface morphology and void growth characteristics of ten- sile and fracture toughness specimens of 2.25Cr-1Mo steels with and without rare-earth (RE)additions have been investigated by quantitative metaltography(QTM),scanning elec- tron microscopy(SEM)and energy dispersive spectroscopy(EDS).There is a substantially higher density of inclusions in the RE-treated steel,which has lower values of fracture proper- ties including critical values of COD and J integral(δ_c and J_(IC)),fracture strain(ε_f) and Charpy V-notch energy(CVN).The fracture surface of the RE-treated steel comprises equiaxed dimples of diameters comparable with its inclusion spacing,whereas for the non-RE-treated steels,a wide range of dimple sizes is found with average diameter much smaller than the corresponding inclusion spacing.The investigation indicates that the lower values of fracture properties for the steel with RE at room temperature may be ascribed to its large content of RE-containing inclusions.
文摘Typically, coarse dense mineral particles greater than 150 μm are difficult to float, and the recovery decreases progressively. Various physical parameters can be manipulated in an attempt to increase the recovery. These physical parameters are the following: liberation, turbulence in the flotation cell, pH, collector, frother type and dosage. The testwork discussed in this paper was performed for a copper-molybdenum operation that is experiencing coarse particle (>150 μm) losses in the tails. This operation uses Diesel No. 2 fuel and sodium ethyl xanthate for molybdenum and copper flotation, respectively and X-133 frother. In an attempt to increase coarse particle recovery, stronger collectors (potassium amyl xanthate, Aero 249 and Aero 3501) and frothers (FrothPro 618, FrothPro 630 and FrothPro 706) were used. The analysis was performed using the Analysis of Variance (ANOVA) approach. The conditions required by the ANOVA method were met. The results showed that the collector potassium amyl xanthate (PAX) with frothers X-133 and FrothPro 630 resulted in approximately 3% increase in copper rougher recovery relative to the baseline (sodium ethyl xanthate and X-133). The collectors and frothers did not have a significant effect on molybdenum recovery within the dosage limits investigated.
基金Natural Resources Canada and government of Canada's interdepartmental Program of Energy Research and Development (PERD)
文摘This study set out to gain a deeper understanding of a fluid catalytic cracking(FCC)coprocessing approach using canola oil mixed with bitumen-derived heavy gas oil(HGO),for the production of partially-renewable gasoline,with respect to its composition and quality.The FCC coprocessing approach may provide an alternative solution to reducing the carbon footprint and to meet government regulatory demands for renewable transportation fuels.In this study,a mixture of 15 v%canola oil in HGO was catalytically cracked with a commercial equilibrium catalyst under typical FCC conditions.Cracking experiments were performed using a bench-scale Advanced Cracking Evaluation(ACE)unit at a fixed weight hourly space velocity of 8 h^(à1),490–530C,and catalyst/oil ratios of 4–12 g/g.The total liquid product samples were injected via an automatic sampler and a prefractionator(to removet254C)into a gas chromatographic system containing a series of columns,traps,and valves designed to separate each of the hydrocarbon types.The analyzer gives detailed hydrocarbon types of à200C gasoline,classified into paraffins,iso-paraffins,olefins,naphthenes,and aromatics by carbon number up to C_(11)(C_(10)for aromatics).For a feed cracked at a given temperature,the gasoline aromatics show the highest selectivity in terms of weight percent conversion,followed by saturated iso-paraffins,saturated naphthenes,unsaturated iso-paraffins,unsaturated naphthenes,unsaturated normal paraffins,and saturated normal paraffins.As conversion increases,both aromatics and saturated iso-paraffins increase monotonically at the expense of other components.Hydrocarbon type analysis and octane numbers with variation in feed type,process severity(temperature and catalyst/oil ratio),and conversion are also presented and discussed.
文摘This paper presents the investigation of energy and cost saving of microgeneration systems which consist of conventional, load sharing, renewable energy and hybrid-renewable energy systems application featuring single detached house and office buildings by implementing spreadsheet modeling. Microsoft excel is employed as the spreadsheet application in this study. The system performance of each case is calculated under typical weather of ottawa, canada. These cases are calculated and analyzed in terms of thermal/cooling load (building demand) and natural gas/electricity consumption (energy supply) as well as the financial part by involving several parameters which are initial cost, annual energy consumption cost, annual operational and maintenance cost, inflation rate, and return on investment. Moreover, a house and an office have the same geometry of 200 mE. Total of seven cases modeling are developed; Case-1- a house with boiler and chiller, Case-2- an office with boiler and chiller, Case-3-a simple sum of Case l and Case 2, Case-4- a load-sharing model, Case-5- a load-sharing with GSHP (ground source heat pump), Case-6- a load-sharing with ground source heat pump-fuel cell hybrid system (FC-GSHP)and Case-7- a load-sharing with GSHP--photovoltaic hybrid system (PVT-GSHP). As the results, it will be observed the efficiency of the load-sharing, renewable energy, hybrid-renewable energy implementation comparing to the conventional system.
文摘Recent advances in machine learning(ML)have led to substantial performance improvement in material database benchmarks,but an excellent benchmark score may not imply good generalization performance.Here we show that ML models trained on Materials Project 2018 can have severely degraded performance on new compounds in Materials Project 2021 due to the distribution shift.We discuss how to foresee the issue with a few simple tools.Firstly,the uniform manifold approximation and projection(UMAP)can be used to investigate the relation between the training and test data within the feature space.Secondly,the disagreement between multiple ML models on the test data can illuminate out-of-distribution samples.We demonstrate that the UMAP-guided and query by committee acquisition strategies can greatly improve prediction accuracy by adding only 1%of the test data.We believe this work provides valuable insights for building databases and models that enable better robustness and generalizability.