期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
6-Phosphogluconate dehydrogenase 2 bridges the OPP and shikimate pathways to enhance aromatic amino acid production in plants
1
作者 Qian Tang Yuxin Huang +11 位作者 Zhuanglin Shen Linhui Sun Yang Gu Huiqing He Yanhong Chen Jiahai Zhou Limin Zhang Cuihuan Zhao Shisong Ma Yunhai Li Jie Wu Qiao Zhao 《Science China(Life Sciences)》 SCIE CAS CSCD 2024年第11期2488-2498,共11页
The oxidative pentose phosphate(OPP)pathway provides metabolic intermediates for the shikimate pathway and directs carbon flow to the biosynthesis of aromatic amino acids(AAAs),which serve as basic protein building bl... The oxidative pentose phosphate(OPP)pathway provides metabolic intermediates for the shikimate pathway and directs carbon flow to the biosynthesis of aromatic amino acids(AAAs),which serve as basic protein building blocks and precursors of numerous metabolites essential for plant growth.However,genetic evidence linking the two pathways is largely unclear.In this study,we identified 6-phosphogluconate dehydrogenase 2(PGD2),the rate-limiting enzyme of the cytosolic OPP pathway,through suppressor screening of arogenate dehydrogenase 2(adh2)in Arabidopsis.Our data indicated that a single amino acid substitution at position 63(glutamic acid to lysine)of PGD2 enhanced its enzyme activity by facilitating the dissociation of products from the active site of PGD2,thus increasing the accumulation of AAAs and partially restoring the defective phenotype of adh2.Phylogenetic analysis indicated that the point mutation occurred in a well-conserved amino acid residue.Plants with different amino acids at this conserved site of PGDs confer diverse catalytic activities,thus exhibiting distinct AAAs producing capability.These findings uncover the genetic link between the OPP pathway and AAAs biosynthesis through PGD2.The gain-of-function point mutation of PGD2 identified here could be considered as a potential engineering target to alter the metabolic flux for the production of AAAs and downstream compounds. 展开更多
关键词 plant metabolism aromatic amino acids oxidative pentose phosphate pathway shikimate pathway 6-phosphogluconate dehydrogenase
原文传递
Size matters:G protein signaling is crucial for grain size control in rice 被引量:3
2
作者 Penggen Duan Yunhai Li 《Molecular Plant》 SCIE CAS CSCD 2021年第10期1618-1620,共3页
Rice is an important food crop and is consumed by nearly half of the world’s population.Rice grain size is a key yield trait and also affects the quality of grain appearance.Several pathways that control grain size h... Rice is an important food crop and is consumed by nearly half of the world’s population.Rice grain size is a key yield trait and also affects the quality of grain appearance.Several pathways that control grain size have been identified in rice,such as heterotrimeric guanine nucleotide-binding protein(G protein)signaling,mitogen-activated protein kinase signaling,the ubiquitinproteasome pathway,phytohormone perception and homeostasis,and some transcriptional regulators(Li et al.,2019). 展开更多
关键词 population. GRAIN SIZE
原文传递
Resistant starch formation in rice:Genetic regulation and beyond 被引量:2
3
作者 Lisha Shen Jiayang Li Yunhai Li 《Plant Communications》 SCIE 2022年第3期41-58,共18页
Resistant starch(RS),a healthy dietary fiber,is a particular type of starch that has attracted much research attention in recent years.RS has important roles in reducing glycemic index,postprandial blood glucose level... Resistant starch(RS),a healthy dietary fiber,is a particular type of starch that has attracted much research attention in recent years.RS has important roles in reducing glycemic index,postprandial blood glucose levels,and serum cholesterol levels,thereby improving and preventing many diseases,such as diabetes,obesity,and cardiovascular disease.The formation of RS is influenced by intrinsic properties of starch(e.g.,starch granule structure,starch crystal structure,and amylose-to-amylopectin ratio)and non-starch components(e.g.,proteins,lipids,and sugars),aswell as storage and processing conditions.Recent studies have revealed that several starch-synthesis-related genes(SSRGs)are crucial for the formation of RS during seed development.Several transcription factors and mRNA splicing factors have been shown to affect the expression or splicing of SSRGs that regulate RS content,suggesting their potential roles in RS formation.This review focuses mainly on recent research progress on the genetic regulation of RS content and discusses the emerging genetic and molecular mechanisms of RS formation in rice. 展开更多
关键词 RICE resistant starch resistant starch formation genetic regulation starch-synthesis-related
原文传递
Natural Variation in the Promoter of GSE5 Contributes to Grain Size Diversity in Rice 被引量:48
4
作者 Penggen Duan Jinsong Xu +9 位作者 Dali Zeng Baolan Zhang Mufan Geng Guozheng Zhang Ke Huang Luojiang Huang Ran Xu Song Ge Qian Qian Yunhai Li 《Molecular Plant》 SCIE CAS CSCD 2017年第5期685-694,共10页
The utilization of natural genetic variation greatly contributes to improvement of important agronomic traits in crops. Understanding the genetic basis for natural variation of grain size can help breeders develop hig... The utilization of natural genetic variation greatly contributes to improvement of important agronomic traits in crops. Understanding the genetic basis for natural variation of grain size can help breeders develop high- yield rice varieties. In this study, we identify a previously unrecognized gene, named GSE5, in the qSW5/ GW5 locus controlling rice grain size by combining the genome-wide association study with functional analyses. GSE5 encodes a plasma membrane-associated protein with |Q domains, which interacts with the rice calmodulin protein, OsCaMl-1. We found that loss of GSE5 function caused wide and heavy grains, while overexpression of GSE5 resulted in narrow grains. We showed that GSE5 regulates grain size predominantly by influencing cell proliferation in spikelet hulls. Three major haplotypes of GSE5 (GSE5, GSE5DELl+IN1, and GSESDEL~ in cultivated rice were identified based on the deletion/insertion type in its pro- moter region. We demonstrated that a 950-bp deletion (DELl) in indica varieties carrying the GSE5DELl+IN1 haplotype and a 1212-bp deletion (DEL2) in japonica varieties carrying the GSE5DEL2 haplotype associated with decreased expression of GSE5, resulting in wide grains. Further analyses indicate that wild rice acces- sions contain all three haplotypes of GSE5, suggesting that the GSE5 haplotypes present in cultivated rice are likely to have originated from different wild rice accessions during rice domestication. Taken together, our results indicate that the previously unrecognized GSE5 gene in the qSW5/GW5 locus, which is widely utilized by rice breeders, controls grain size, and reveal that natural variation in the promoter region of GSE5 contributes to grain size diversity in rice. 展开更多
关键词 RICE natural variation GSE5 grain size cell proliferation
原文传递
Control of Grain Size and Weight by the OsMKKK10-OsM KK4-OsMAPK6 Signaling Pathway in Rice 被引量:44
5
作者 Ran Xu Penggen Duan +12 位作者 Haiyue Yu Zhengkui Zhou Baolan Zhang Ruci Wang Jing Li Guozheng Zhang Shangshang Zhuang Jia Lyu Na Li Tuanyao Chai Zhixi Tian Shanguo Yao Yunhai Li 《Molecular Plant》 SCIE CAS CSCD 2018年第6期860-873,共14页
Grain size is one of the key agronomic traits that determine grain yield in crops. However, the mechanisms underlying grain size control in crops remain elusive. Here we demonstrate that the OsMKKK10-OsMKK4- OsMAPK6 s... Grain size is one of the key agronomic traits that determine grain yield in crops. However, the mechanisms underlying grain size control in crops remain elusive. Here we demonstrate that the OsMKKK10-OsMKK4- OsMAPK6 signaling pathway positively regulates grain size and weight in rice. In rice, loss of OsMKKKIO function results in small and light grains, short panicles, and semi-dwarf plants, while overexpression of constitutively active OsMKKK10 (CA-OsMKKK10) results in large and heavy grains, long panicles, and tall plants. OsMKKK10 interacts with and phosphorylates OsMKK4. We identified an OsMKK4 gain-of-func- tion mutant (large11-1D)that produces large and heavy grains. OsMKK4A227T encoded by the large11-1D allele has stronger kinase activity than OsMKK4. Plants overexpressing a constitutively active form of OsMKK4 (OsMKK4oDD) also produce large grains. Further biochemical and genetic analyses revealed that OsMKKK10, OsMKK4, and OsMAPK6 function in a common pathway to control grain size. Taken together, our study establishes an important genetic and molecular framework for OsMKKK10-OsMKK4- OsMAPK6 cascade-mediated control of grain size and weight in rice. 展开更多
关键词 Oryza sativa grain size MAPK signaling cell proliferation
原文传递
The GW2-WG1-OsbZIP47 pathway controls grain size and weight in rice 被引量:20
6
作者 Jianqin Hao Dekai Wang +11 位作者 Yingbao Wu Ke Huang Penggen Duan Na Li Ran Xu Dali Zeng Guojun Dong Baolan Zhang Limin Zhang Dirk Inze Qian Qian Yunhai Li 《Molecular Plant》 SCIE CAS CSCD 2021年第8期1266-1280,共15页
Regulation of seed size is a key strategy for improving crop yield and is also a basic biological question.However,the molecular mechanisms by which plants determine their seed size remain elusive.Here,we report that ... Regulation of seed size is a key strategy for improving crop yield and is also a basic biological question.However,the molecular mechanisms by which plants determine their seed size remain elusive.Here,we report that the GW2-WG1-OsbZIP47 regulatory module controls grain width and weight in rice.WG1,which encodes a glutaredoxin protein,promotes grain growth by increasing cell proliferation.Interestingly,WG1 interacts with the transcription factor OsbZIP47 and represses its transcriptional activity by associating with the transcriptional co-repressor ASP1,indicating that WG1 may act as an adaptor protein to recruit the transcriptional co-repressor.In contrary,OsbZIP47 restricts grain growth by decreasing cell proliferation.Further studies reveal that the E3 ubiquitin ligase GW2 ubiquitinates WG1 and targets it for degradation.Genetic analyses confirm that GW2,WG1,and OsbZIP47 function in a comm on pathway to control grain growth.Taken together,ourfindi ngs reveal a genetic and molecular framework for the control of grain size and weight by the GW2-WG1-OsbZIP47 regulatory module,providing new targets for improving seed size and weight in crops. 展开更多
关键词 RICE WG1 GW2 OsbZIP47 grain size and weight cell proliferation
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部