期刊文献+
共找到179篇文章
< 1 2 9 >
每页显示 20 50 100
Oriented Organization of Poly(3-Hexylthiophene)for Efficient and Stable Antimony Sulfide Solar Cells
1
作者 Jinxiang Gao Rongfeng Tang +6 位作者 Huiling Cai Zhiyuan Cai Peng Xiao Gang Li Chenhui Jiang Changfei Zhu Tao Chen 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第6期312-317,共6页
Poly(3-hexylthiophene)(P3HT),as a traditional organic hole-transporting material(HTM),is widely used in thin-film solar cells due to its high charge mobility and good thermal stability.However,the P3HT films obtained ... Poly(3-hexylthiophene)(P3HT),as a traditional organic hole-transporting material(HTM),is widely used in thin-film solar cells due to its high charge mobility and good thermal stability.However,the P3HT films obtained by the traditional method are amorphous,which is unfavorable to hole extraction and transport.Here,a low-toxicity solvent 1,2,4-trimethylbenzene(TMB)was used as the solvent instead of the commonly used halogen solvent chlorobenzene(CB)to dissolve P3HT.Thus,the self-assembled nanofibrous P3HT film was prepared and applied as HTM in the newly emerged Sb_(2)S_(3)solar cells.According to the density functional theory calculations,the interface contact between TMB-P3HT and Sb_(2)S_(3)was enhanced via the bonding interaction of S in P3HT and Sb in Sb_(2)S_(3).Through transient absorption spectroscopy characterization,the enhanced interface contact improves the charge extraction ability of TMB-P3HT when compared to the CB-P3HT film.Thus,the TMB-P3HT-based Sb_(2)S_(3)solar cell delivers a power conversion efficiency of 6.21%,which is 9.7%higher than that of the CB-P3HT-based device.Furthermore,the dopant-free TMB-P3HT-based Sb_(2)S_(3)devices exhibit excellent environmental stability compared with Spiro-OMeTAD-based devices.This work demonstrates that the application of P3HT and the solvent engineering of HTM are applicable strategies for developing Sb_(2)S_(3)solar cells with high efficiency and stability. 展开更多
关键词 green solvent P3HT Sb_(2)S_(3) self-assembled nanofibrous solar cell
下载PDF
Overcoming the Na-ion conductivity bottleneck for the cost-competitive chloride solid electrolytes
2
作者 Lv Hu Hui Li +3 位作者 Fang Chen Yating Liu Jinzhu Wang Cheng Ma 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第8期1-8,I0001,共9页
Chloride solid electrolytes possess multiple advantages for the construction of safe,energy-dense allsolid-state sodium batteries,but presently the chlorides with sufficiently high cost-competitiveness for commerciali... Chloride solid electrolytes possess multiple advantages for the construction of safe,energy-dense allsolid-state sodium batteries,but presently the chlorides with sufficiently high cost-competitiveness for commercialization almost all exhibit low Na-ion conductivities of around 10^(-5)S cm^(-1)or lower.Here,we report a chloride solid electrolyte,Na_(2.7)ZFCl_(5.3)O_(0.7),which reaches a Na-ion conductivity of 2.29×10^(-4)S cm^(-1)at 25℃without involving overly expensive raw materials such as rare-earth chlorides or Na_(2)S.In addition to the efficient ion transport,Na_(2.7)ZrCl_(5.3)O_(0.7)also shows an excellent deformability surpassing that of the widely studied Na_(3)PS_(4),Na_(3)SbS_(4),and Na_(2)ZrCl_(6)solid electrolytes.The combination of these advantages allows the all-solid-state cell based on Na_(2.7)ZrCl_(5.3)O_(0.7)and NaCrO_(2)to realize stable room-temperature cycling at a much higher specific current than those based on other non-viscoelastic chloride solid electrolytes in literature(120 mA g^(-1)vs.12-55 mA g^(-1));after 100 cycles at such a high rate,the Na_(2.7)ZFCl_(5.3)O_(0.7)-based cell can still deliver a discharge capacity of 80 mAh g^(-1)at25℃. 展开更多
关键词 All-solid-state sodium batteries Ionic conductivities Solid electrolytes Chlorides High voltage stability
下载PDF
Highly efficient and selective photocatalytic dehydrogenation of benzyl alcohol for simultaneous hydrogen and benzaldehyde production over Ni-decorated Zn_(0.5)Cd_(0.5)S solid solution 被引量:7
3
作者 Lei Zhang Daochuan Jiang +3 位作者 Rana Muhammad Irfan Shan Tang Xin Chen Pingwu Du 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2019年第3期71-77,共7页
Photocatalytic conversion of solar energy into hydrogen and high value-added fine chemicals has attracted increasing attention. Herein, we demonstrate an efficient photocatalytic system for simultaneous hydrogen evolu... Photocatalytic conversion of solar energy into hydrogen and high value-added fine chemicals has attracted increasing attention. Herein, we demonstrate an efficient photocatalytic system for simultaneous hydrogen evolution and benzaldehyde production by dehydrogenation of benzyl alcohol over Nidecorated Zn_(0.5)Cd_(0.5)S solid solution under visible light. The photocatalytic system shows an excellent hydrogen production rate of 666.3 μmol h^(-1) with high stability. The optimal apparent quantum yield of52.5% is obtained at 420 nm. This noble-metal-free photocatalytic system displays much higher activity than pure Zn_(0.5)Cd_(0.5)S and Pt-loaded Zn_(0.5)Cd_(0.5)S solid solution. Further studies reveal that the metallic Ni nanocrystals play an important role in accelerating the separation of photogenerated charge carriers and the subsequent cleavage of α-C–H bond during dehydrogenation of benzyl alcohol. 展开更多
关键词 Photocatalysis BENZYL ALCOHOL oxidation HYDROGEN PRODUCTION Nickel Solid solution Charge separation
下载PDF
Preparation of dense Ta-LLZO/MgO composite Li-ion solid electrolyte:Sintering, microstructure, performance and the role of MgO 被引量:11
4
作者 Xiao Huang Yang Lu +3 位作者 Zhen Song Tongping Xiu Michael EBadding Zhaoyin Wen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2019年第12期8-16,共9页
Cubic phase Li7La3Zr2O12(LLZO),a member of the Li–Garnet family,is a promising solid electrolyte and has been widely studied in recent years.However,LLZO samples prepared via conventional ambient air sintering report... Cubic phase Li7La3Zr2O12(LLZO),a member of the Li–Garnet family,is a promising solid electrolyte and has been widely studied in recent years.However,LLZO samples prepared via conventional ambient air sintering reported in the published literature often contain large grains with lower than desired(<94%)relative density.In this study,a non-contact method of co-firing with mother powder method is proposed to prepare high-quality Ta-doped LLZO–MgO composite ceramics.By sintering at 1150℃for 5 h,the ceramics can reach relative density of 98.2%,conductivity of 5.17×10^-4 S cm^-1 at 25℃and fracture strength of 150 MPa.The sintered samples have uniform fine-grained microstructure and high critical current densities of 0.75–0.95 mA cm-2 at room temperature in Li–Li symmetry cell with Au modification.In addition,systematic sintering experiments and characterizations are conducted to explore the function of MgO in inhibiting the Ta-LLZO grain growth and its existing form inside the composite ceramics. 展开更多
关键词 Li-Garnet Solid electrolyte Mechanism Critical current density SINTERING
下载PDF
Carbon materials for stable Li metal anodes: Challenges, solutions, and outlook 被引量:12
5
作者 Qiongqiong Lu Yulin Jie +6 位作者 Xiangqi Meng Ahmad Omar Daria Mikhailova Ruiguo Cao Shuhong Jiao Yan Lu Yaolin Xu 《Carbon Energy》 SCIE CAS 2021年第6期957-975,共19页
Lithium(Li)metal is regarded as the ultimate anode for next-generation Li-ion batteries due to its highest specific capacity and lowest electrochemical potential.However,the Li metal anode has limitations,including vi... Lithium(Li)metal is regarded as the ultimate anode for next-generation Li-ion batteries due to its highest specific capacity and lowest electrochemical potential.However,the Li metal anode has limitations,including virtually infinite volume change,nonuniform Li deposition,and an unstable electrode-electrolyte interface,which lead to rapid capacity degradation and poor cycling stability,significantly hindering its practical application.To address these issues,intensive efforts have been devoted toward accommodating and guiding Li deposition as well as stabilizing the interface using various carbon materials,which have demonstrated excellent effectiveness,benefiting from their vast variety and excellent tunability of the structure-property relationship.This review is intended as a guide through the fundamental challenges of Li metal anodes to the corresponding solutions utilizing carbon materials.The specific functionalities and mechanisms of carbon materials for stabilizing Li metal anodes in these solutions are discussed in detail.Apart from the stabilization of the Li metal anode in liquid electrolytes,attention has also been paid to the review of anode-free Li metal batteries and solid-state batteries enabled by strategies based on carbon materials.Furthermore,we have reviewed the unresolved challenges and presented our outlook on the implementation of carbon materials for stabilizing Li metal anodes in practical applications. 展开更多
关键词 carbon materials interface engineering Li deposition regulation Li metal anode structure stabilization
下载PDF
Recent Advances on MOF Derivatives for Non-Noble Metal Oxygen Electrocatalysts in Zinc-Air Batteries 被引量:8
6
作者 Yuting Zhu Kaihang Yue +5 位作者 Chenfeng Xia Shahid Zaman Huan Yang Xianying Wang Ya Yan Bao Yu Xia 《Nano-Micro Letters》 SCIE EI CAS CSCD 2021年第9期164-192,共29页
Oxygen electrocatalysts are of great importance for the air electrode in zinc-air batteries(ZABs).Owing to the high specific surface area,controllable pore size and unsaturated metal active sites,metal-organic framewo... Oxygen electrocatalysts are of great importance for the air electrode in zinc-air batteries(ZABs).Owing to the high specific surface area,controllable pore size and unsaturated metal active sites,metal-organic frameworks(MOFs)derivatives have been widely studied as oxygen electrocatalysts in ZABs.To date,many strategies have been developed to generate efficient oxygen electrocatalysts from MOFs for improving the performance of ZABs.In this review,the latest progress of the MOF-derived non-noble metal-oxygen electrocatalysts in ZABs is reviewed.The performance of these MOF-derived catalysts toward oxygen reduction,and oxygen evolution reactions is discussed based on the categories of metal-free carbon materials,single-atom catalysts,metal cluster/carbon composites and metal compound/carbon composites.Moreover,we provide a comprehensive overview on the design strategies of various MOF-derived non-noble metal-oxygen electrocatalysts and their structure-performance relationship.Finally,the challenges and perspectives are provided for further advancing the MOF-derived oxygen electrocatalysts in ZABs. 展开更多
关键词 Metal-organic framework Non-noble metal Oxygen electrocatalysts Air electrode Zinc-air batteries
下载PDF
Morphology-dependent structures and catalytic performances of Au nanostructures on Cu_2O nanocrystals synthesized by galvanic replacement reaction 被引量:2
7
作者 Zhenhua Zhang Rui Song +1 位作者 Tian Cao Weixin Huang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2016年第6期1086-1091,共6页
Au nanostructures were prepared on uniform Cu2O octahedra and rhombic dodecahedra via the galvanic replacement reaction between HAuCl 4 and Cu2O. The compositions and structures were studied by Scanning Electron Micro... Au nanostructures were prepared on uniform Cu2O octahedra and rhombic dodecahedra via the galvanic replacement reaction between HAuCl 4 and Cu2O. The compositions and structures were studied by Scanning Electron Microscope (SEM), Transmission Electron Microscope (TEM), High-Resolution Transmission Electron Microscope (HRTEM), X-Ray Diffraction (XRD), X-Ray Absorption Spectroscopy (XAS), X-ray Photoelectron Spectroscopy (XPS) and in-situ DRIFTS spectroscopy of CO adsorption. Different from the formation of Au-Cu alloys on Cu2O cubes by the galvanic replacement reaction (ChemNanoMat 2 (2016) 861-865), metallic Au particles and positively-charged Au clusters form on Cu2O octahedra and rhombic dodecahedra at very small Au loadings and only metallic Au particles form at large Au loadings. Metallic Au particles on Cu2O octahedra and rhombic dodecahedra are more active in catalyzing the liquid phase aerobic oxidation reaction of benzyl alcohol than positively-charged Au clusters. These results demonstrate an obvious morphology effect of Cu2O nanocrystals on the liquid-solid interfacial reactions and prove oxide morphology as an effective strategy to tune the surface reactivity and catalytic performance. (C) 2016 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by Elsevier B.V. and Science Press. All rights reserved. 展开更多
关键词 Au/Cu2O nanocomposites Galvanic replacement reaction Liquid-solid interfacial reaction Crystal plane effect Aerobic oxidation of benzyl alcohol
下载PDF
Revisiting the Role of Physical Confinement and Chemical Regulation of 3D Hosts for Dendrite-Free Li Metal Anode 被引量:3
8
作者 Shufen Ye Xingjia Chen +8 位作者 Rui Zhang Yu Jiang Fanyang Huang Huijuan Huang Yu Yao Shuhong Jiao Xiang Chen Qiang Zhang Yan Yu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2022年第11期290-306,共17页
Lithium metal anode has been demonstrated as the most promising anode for lithium batteries because of its high theoretical capacity,but infinite volume change and dendritic growth during Li electrodeposition have pre... Lithium metal anode has been demonstrated as the most promising anode for lithium batteries because of its high theoretical capacity,but infinite volume change and dendritic growth during Li electrodeposition have prevented its practical applications.Both physical morphology confinement and chemical adsorption/diffusion regulation are two crucial approaches to designing lithiophilic materials to alleviate dendrite of Li metal anode.However,their roles in suppressing dendrite growth for long-life Li anode are not fully understood yet.Herein,three different Ni-based nanosheet arrays(NiO-NS,Ni_(3)N-NS,and Ni_(5)P_(4)-NS)on carbon cloth as proof-of-concept lithiophilic frame-works are proposed for Li metal anodes.The two-dimensional nanoarray is more promising to facilitate uniform Li^(+)flow and electric field.Compared with the NiO-NS and the Ni_(5)P_(4)-NS,the Ni_(3)N-NS on carbon cloth after reacting with molten Li(Li-Ni/Li_(3)N-NS@CC)can afford the strongest adsorption to Li+and the most rapid Li+diffusion path.Therefore,the Li-Ni/Li_(3)N-NS@CC electrode realizes the lowest overpotential and the most excellent electrochemical performance(60 mA cm^(−2)and 60 mAh cm^(−2)for 1000 h).Furthermore,a remarkable full battery(LiFePO_(4)||Li-Ni/Li_(3)N-NS@CC)reaches 300 cycles at 2C.This research provides valuable insight into designing dendrite-free alkali metal batteries. 展开更多
关键词 Li metal anodes 3D carbon framework Ni-based nanosheets Physical morphology confinement Chemical adsorption/diffusion regulation
下载PDF
Bifunctional TiO2 Catalysts for Efficient Cr(VI) Photoreduction Under Solar Light Irradiation Without Addition of Acids 被引量:2
9
作者 Fu-cheng Shi Wen-dong Wang Wei-xin Huang 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2012年第2期214-218,I0004,共6页
Bifunctional TiO2 photocatalysts co-doped with nitrogen and sulfur were prepared by the controlled thermal decomposition of ammonium titanyl sulfate precursor. They have both photocatalytic activity and Brφnsted acid... Bifunctional TiO2 photocatalysts co-doped with nitrogen and sulfur were prepared by the controlled thermal decomposition of ammonium titanyl sulfate precursor. They have both photocatalytic activity and Brφnsted acidity, and thus are active in the photoreduction of Cr(VI) under solar light irradiation without the addition of acids. The activity is superior to that of Degussa P25 in the acidified suspension at the same pH adjusted by H2SO4. 展开更多
关键词 Cr(VI) photocatalytic reduction TIO2 Brcnsted acidity Bifunctional catalyst
下载PDF
UV Laser Regulation of Surface Oxygen Vacancy of CoFe2O4 for Enhanced Oxygen Evolution Reaction 被引量:1
10
作者 Zhen-hong Xiao Dao-chuan Jiang +5 位作者 Han Xu Jing-tian Zhou Qi-zhong Zhang Ping-wu Du Zhen-lin Luo Chen Gao 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2018年第5期691-694,736,共5页
Oxygen evolution reaction is one of the key processes in the promising renewable energy technique of electrocatalytic water splitting.Developing high ecient oxygen evolution reaction(OER)catalysts requires determinati... Oxygen evolution reaction is one of the key processes in the promising renewable energy technique of electrocatalytic water splitting.Developing high ecient oxygen evolution reaction(OER)catalysts requires determination of the optimal values of the descriptor parameters.Using spinel CoFe2O4 as the model catalyst,this work demonstrates that irradiation with pulsed UV laser can control the quantity of surface oxygen vacancy and thus modify the OER activity,in a volcano-shape evolution trend.This strategy sheds light on quantita-tively investigation of the relationship between surface cation valence,anion vacancy,and physicochemical properties of transition-metal-based compounds. 展开更多
关键词 Oxygen evolution reaction Spinel oxide Transition metal oxide Laser irradiation Oxygen vacancy
下载PDF
Molecular Engineering Design for High-Performance Aqueous Zinc-Organic Battery 被引量:6
11
作者 Tianjiang Sun Weijia Zhang +1 位作者 Qingshun Nian Zhanliang Tao 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第3期98-111,共14页
Novel small sulfur heterocyclic quinones(6a,16adihydrobenzo[b]naphtho[2′,3′:5,6][1,4]dithiino[2,3-i]thianthrene-5,7,9,14,16,18-hexaone(4S6Q)and benzo[b]naphtho[2′,3′:5,6][1,4]dithiino[2,3-i]thianthrene-5,9,14,18-t... Novel small sulfur heterocyclic quinones(6a,16adihydrobenzo[b]naphtho[2′,3′:5,6][1,4]dithiino[2,3-i]thianthrene-5,7,9,14,16,18-hexaone(4S6Q)and benzo[b]naphtho[2′,3′:5,6][1,4]dithiino[2,3-i]thianthrene-5,9,14,18-tetraone(4S4Q))are developed by molecule structural design method and as cathode for aqueous zincorganic batteries.The conjugated thioether(–S–)bonds as connected units not only improve the conductivity of compounds but also inhibit their dissolution by both extendedπ-conjugated plane and constructed flexible molecular skeleton.Hence,the Zn//4S6Q and Zn//4S4Q batteries exhibit satisfactory electrochemical performance based on 3.5 mol L-1(M)Zn(ClO4)2electrolyte.For instance,the Zn//4S6Q battery obtains 240 and 208.6 mAh g^(-1)of discharge capacity at 150 mA g^(-1)and 30 A g^(-1),respectively.The excellent rate capability is ascribed to the fast reaction kinetics.This system displays a superlong life of 20,000 cycles with no capacity fading at 3 A g^(-1).Additionally,the H+-storage mechanism of the 4S6Q compound is demonstrated by ex situ analyses and density functional theory calculations.Impressively,the battery can normally work at-60℃benefiting from the anti-freezing electrolyte and maintain a high discharge capacity of 201.7 mAh g^(-1),which is 86.2%of discharge capacity at 25℃.The cutting-edge electrochemical performances of these novel compounds make them alternative electrode materials for Zn-organic batteries. 展开更多
关键词 Aqueous Zn-organic battery Small sulfur heterocyclic quinones Conjugated thioether skeleton Superlong cycling life H+-involved mechanism -60℃
下载PDF
NS codoped carbon nanorods as anode materials for high-performance lithium and sodium ion batteries 被引量:1
12
作者 Ajuan Hu Song Jin +2 位作者 Zhenzhen Du Hongchang Jin Hengxing Ji 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2018年第1期203-208,共6页
NS codoped carbon nanorods(NS-CNRs) were prepared using crab shell as template and polyphenylene sulfide(PPS) as both the C and S precursor, followed by carbonization in NH_3. The as-obtained NS-CNRs had a diamete... NS codoped carbon nanorods(NS-CNRs) were prepared using crab shell as template and polyphenylene sulfide(PPS) as both the C and S precursor, followed by carbonization in NH_3. The as-obtained NS-CNRs had a diameter of ~50 nm, length of several micrometers, and N and S contents of 12.5 at.% and 3.7 at.%,respectively, which can serve as anodes for both lithium-ion batteries(LIBs) and sodium ion batteries(SIBs). When serving as an anode of LIB, the NS-CNRs delivered gravimetric capacities of 2154 mAh g^(-1)at current densities of 0.1 A g^(-1)and 625 mAh g^(-1)at current densities of 5.0 A g^(-1)for 1000 cycles.When serving as an anode of SIB, the NS-CNRs delivered gravimetric capacities of 303 mAh g^(-1)at current densities of 0.1 A g^(-1)and 230 mAh g^(-1)at current densities of 1.0 A g^(-1)for 3000 cycles. The excellent electrochemical performance of NS-CNRs could be ascribed to the one-dimensional nanometer structure and high level of heteroatom doping. We expect that the obtained NS-CNRs would benefit for the future development of the doped carbon materials for lithium ion batteries and other extended applications such as supercapacitor, catalyst and hydrogen storage. 展开更多
关键词 NS codoped carbon Crab shell template Lithium ion batteries Sodium ion batteries
下载PDF
Tailored deep-eutectic solvent method to enable 3D porous iron fluoride bricks for conversion-type lithium batteries 被引量:2
13
作者 Chuanzhong Lai Keyi Chen +3 位作者 Yongjian Zheng Junwei Meng Jiulin Hu Chilin Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第3期178-187,I0006,共11页
Conversion-type fluoride cathode can provide considerable energy density for Li batteries,however its scalable and facile synthesis strategies are still lacking.Here,a novel Fe-based deep eutectic solvent composed of ... Conversion-type fluoride cathode can provide considerable energy density for Li batteries,however its scalable and facile synthesis strategies are still lacking.Here,a novel Fe-based deep eutectic solvent composed of nitrite and methylsulfonylmethane is proposed as both the reaction medium and precursor to synthesize O-doped FeF3porous bricks.This method is cheaper,safe,mildly operable,environmentally friendly and recyclable for non-fluorinated metal cations.The homogenization of charge and mass transport in cathode network effectively mitigates the volume extrusion and electrode coarsening even for the micro-sized monolithic particles.The Co-solvation modulated fluoride cathode delivers high reversible capacity in a wide temperature range(486 and 235 mA h g^(-1)at 25℃ and-20℃ respectively),excellent rate performance(312 mA h g^(-1)at 1000 mA g^(-1)),corresponding to an energy density as high as672.1 W h kg^(-1)under a power density of 2154.3 W kg^(-1).The successful operation of fluoride pouchcell with a capacity exceeding 450 mA h g^(-1)(even under thin Li foil and lean electrolyte conditions) indicates its potentiality of commercial application. 展开更多
关键词 Ironfluoride Deep-Eutectic solvent Conversion cathode Li batteries Porous brick structure
下载PDF
Facile deposition of cobalt oxide based electrocatalyst on low-cost and tin-free electrode for water splitting
14
作者 Ali Han Pingwu Du 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2014年第2期179-184,共6页
Facile deposition of a water-splitting catalyst on low-cost electrode materials could be attractive for hydrogen production from water and solar energy conversion. Herein we describe fast electrodeposition of cobalt-b... Facile deposition of a water-splitting catalyst on low-cost electrode materials could be attractive for hydrogen production from water and solar energy conversion. Herein we describe fast electrodeposition of cobalt-based water oxidation catalyst (Co-WOC) on simple graphite electrode for water splitting, The deposition process is quite fast, which reaches a plateau in less than 75 min and the final ctLrrent density is -1.8 mA/cm2 under the applied potential of 1.31 V at pH --7.0. The scanning electron microscopy (SEM) study shows the formation of nanometer-sized particles (10-100 nm) on the surface of the electrode after only 2 min and micrometer-sized particles (2-5/zm) after 90 rain of electrolysis. X-ray photoelectron spectroscopy (XPS) data demonstrate the as-synthesized ex-situ catalyst mainly contains Co2+ and Co3+ species incorporating a substantial amount of phosphate anions. These experiments suggest that cost-efficient cobalt oxide materials on graphite exhibit alluring ability for water splitting, which might provide a novel method to fabricate low-cost devices for electrochemical energy storage. 展开更多
关键词 ELECTROCATALYST water splitting water oxidation hydrogen production
下载PDF
Layer-Structured Ti Doped O3-Na1-xCr1-xTixO2(x=0,0.03,0.05)with Excellent Electrochemical Performance as Cathode Materials for Sodium Ion Batteries
15
作者 Yu Shao Zhong-feng Tang +1 位作者 Jia-ying Liao Chun-hua Chen 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2018年第5期673-676,735,736,共6页
Layer-structured O3 type cathode materials Na1-xCr1-xTixO2(x=0,0.03,0.05)are fabri-cated by a thermo-polymerization method.The structures and morphologies are characterized by X-ray diffraction(XRD)and scanning electr... Layer-structured O3 type cathode materials Na1-xCr1-xTixO2(x=0,0.03,0.05)are fabri-cated by a thermo-polymerization method.The structures and morphologies are characterized by X-ray diffraction(XRD)and scanning electron microscopy(SEM)respectively.It has been found that the appropriate Ti doping effectively leads to the formation of uniform morphology.As a cathode,the x=0.03 sample delivers a quite high discharge capacity of 110 mAh/g at 32 C in the voltage range from 2.0 V to 3.6 V(vs.Na/Na+)and with a capac-ity retention of 96%after 100 cycles at 0.2 C.The Na//Na0:97Cr0.97Ti0.03O2 cell exhibits very high coulombic efficiency(above 96%).All these results suggest that Na0:97Cr0.97Ti0.03O2 is very promising for high-rate sodium ion batteries. 展开更多
关键词 Sodium chromium oxide Doping Sodium ion battery Layered oxide CATHODE
下载PDF
Ti_(3)C_(2)T_(x)MXene doped by W atoms for full-spectrum photofixation of nitrogen
16
作者 Qi LI Ji-liang XU +7 位作者 San-mei WANG Kai-fu YU Wen-kun ZHU Ting-ting HOU Lan-tian ZHANG Wen-hua ZHANG Shu-quan LIANG Liang-bing WANG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2022年第1期233-250,共18页
Full-spectrum photofixation of N_(2) with remarkable NH_(3) production rate of 228μmol/(g·h)was achieved by W atoms doped Ti_(3)C_(2)T_(x)MXene(W/Ti_(3)C_(2)T_(x)-U)catalyst without sacrificial agents at room te... Full-spectrum photofixation of N_(2) with remarkable NH_(3) production rate of 228μmol/(g·h)was achieved by W atoms doped Ti_(3)C_(2)T_(x)MXene(W/Ti_(3)C_(2)T_(x)-U)catalyst without sacrificial agents at room temperature.The effects of W doping and ultrasonic intercalation of Ti_(3)C_(2)T_(x)MXene were studied.Scanning transmission electron microscope,electron spin resonance spectra,X-ray photoemission spectroscopy,UV-Vis spectrophotometer,temperature programmed adsorption analyzer and density functional theory calculation were used to characterize the obtained catalysts.Results showed that Ti_(3)C_(2)T_(x)MXene harvested ultraviolet-visible and near-infrared light to generate hot electrons.In addition,the doped W atoms played an effective role in adsorbing and activating N_(2) molecules by donating electrons to the anti-bonding orbital of N_(2) molecules to elongate the bond length of N≡N. 展开更多
关键词 nitrogen fixation PHOTOCATALYSIS MXene TUNGSTEN full-spectrum
下载PDF
High-Performance Chemical Information Database towards Accelerating Discovery of Metal-Organic Frameworks for Gas Adsorption with Machine Learning
17
作者 Zi-kai Hao Hai-feng Lv +1 位作者 Da-yong Wang Xiao-jun Wu 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2021年第4期436-442,I0003,共8页
Chemical structure searching based on databases and machine learning has at-tracted great attention recently for fast screening materials with target func-tionalities.To this end,we estab-lished a high-performance che... Chemical structure searching based on databases and machine learning has at-tracted great attention recently for fast screening materials with target func-tionalities.To this end,we estab-lished a high-performance chemical struc-ture database based on MYSQL engines,named MYDB.More than 160000 metal-organic frameworks(MOFs)have been collected and stored by using new retrieval algorithms for effcient searching and recom-mendation.The evaluations results show that MYDB could realize fast and effcient key-word searching against millions of records and provide real-time recommendations for similar structures.Combining machine learning method and materials database,we developed an adsorption model to determine the adsorption capacitor of metal-organic frameworks to-ward argon and hydrogen under certain conditions.We expect that MYDB together with the developed machine learning techniques could support large-scale,low-cost,and highly convenient structural research towards accelerating discovery of materials with target func-tionalities in the eld of computational materials research. 展开更多
关键词 Chemical informatics DATABASE Search engine Machine learning Gas ab-sorption
下载PDF
A robust fluorine-containing ceramic cathode for direct CO_(2) electrolysis in solid oxide electrolysis cells
18
作者 Shaowei Zhang Chengyue Yang +2 位作者 Yunan Jiang Ping Li Changrong Xia 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第2期300-309,I0008,共11页
Stro ntium-doped lanthanum ferrite(LSF)is a potential ceramic cathode for direct CO_(2) electrolysis in solid oxide electrolysis cells(SOECs),but its application is limited by insufficient catalytic activity and stabi... Stro ntium-doped lanthanum ferrite(LSF)is a potential ceramic cathode for direct CO_(2) electrolysis in solid oxide electrolysis cells(SOECs),but its application is limited by insufficient catalytic activity and stability in CO_(2)-containing atmospheres.Herein,a novel strategy is proposed to enhance the electrolytic performance as well as chemical stability,achieved by doping F into the O-site of the perovskite LSF.Doping F does not change the phase structure but reduces the cell volume and improves the chemical stability in a CO_(2)-rich atmosphere.Importantly,F doping favors oxygen vacancy formation,increases oxygen vacancy concentration,and enhances the CO_(2) adsorption capability.Meanwhile,doping with F greatly improves the kinetics of the CO_(2) reduction reaction.For example,kchem increases by 78%from3.49×10^(-4) cm s^(-1) to 6.24×10^(-4) cm s^(-1),and Dchem doubles from 4.68×10^(-5) cm^(2) s^(-1) to 9.45×10^(-5)cm^(2) s^(-1).Consequently,doping F significantly increases the electrochemical performance,such as reducing R_(p) by 52.2%from 0.226Ωcm^(2) to 0.108Ωcm^(2) at 800℃.As a result,the single cell with the Fcontaining cathode exhibits an extremely high current density of 2.58 A cm^(-2) at 800℃and 1.5 V,as well as excellent durability over 200 h for direct CO_(2) electrolysis in SOECs. 展开更多
关键词 Solid oxide electrolysis cell CO_(2)electrolysis Ceramic cathode F doping Strontium-doped lanthanum ferrite
下载PDF
Unraveling abnormal buried interface anion defect passivation mechanisms depending on cation-induced steric hindrance for efficient and stable perovskite solar cells
19
作者 Dongmei He Ru Li +8 位作者 Baibai Liu Qian Zhou Hua Yang Xuemeng Yu Shaokuan Gong Xihan Chen Baomin Xu Shangfeng Yang Jiangzhao Chen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第5期1-9,I0001,共10页
Although ionic liquids(ILs)have been widely employed to heal the defects in perovskite solar cells(PSCs),the corresponding defect passivation mechanisms are not thoroughly understood up to now.Herein,we first reveal a... Although ionic liquids(ILs)have been widely employed to heal the defects in perovskite solar cells(PSCs),the corresponding defect passivation mechanisms are not thoroughly understood up to now.Herein,we first reveal an abnormal buried interface anion defect passivation mechanism depending on cationinduced steric hindrance.The IL molecules containing the same anion([BF4]^(-))and different sizes of imidazolium cations induced by substituent size are used to manipulate buried interface.It was revealed what passivated interfacial defects is mainly anions instead of cations.Theoretical and experimental results demonstrate that the large-sized cations can weaken the ionic bond strength between anions and cations,and facilitate the interaction between anions and SnO2as well as perovskites,which is conducive to interfacial defect passivation and ameliorating interfacial contact.It can be concluded that interfacial chemical interaction strength and defect passivation effect are positively correlated with the size of cations.The discovery breaks conventional thinking that large-sized modification molecules would weaken their chemical interaction with perovskite.Compared with the control device(21.54%),the device based on 1,3-Bis(1-adamantyl)-imidazolium tetrafluoroborate(BAIMBF4)with maximum size cations achieves a significantly enhanced efficiency of 23.61%along with much increased moisture,thermal and light stabilities. 展开更多
关键词 Perovskite solar cells Buried interface Ionic liquid Anion defect passivation mechanism Cation-induced steric hindrance
下载PDF
Dynamic Multiscale Model for Dielectric Anomaly in PbTiOa-CoFe2O4 Epitaxial Nanocomposite Film
20
作者 胡传圣 孙霞 +1 位作者 罗震林 高琛 《Chinese Physics Letters》 SCIE CAS CSCD 2014年第11期26-29,共4页
Theoretical calculations based on a multiscale model are proposed to interpret the dielectric anomalous enhancement observed around x = 0.2 in the (PbTiO3)1-x^-(CoFe2Oa)x (0≤x ≤1) epitaxial nanocomposite sprea... Theoretical calculations based on a multiscale model are proposed to interpret the dielectric anomalous enhancement observed around x = 0.2 in the (PbTiO3)1-x^-(CoFe2Oa)x (0≤x ≤1) epitaxial nanocomposite spread film. First principles calculation combined with thermodynamics statistics reveals that the dynamic ratio between different PbTiO3 phases under an external electric field is responsible for the dielectric anomaly. To verify this model with direct microstructure evidence, high resolution and high accuracy synchrotron radiation x-ray diffraction of (PbTiO3)0.8-(CoFe204)0.2 epitaxial composite film under an in situ electric field is collected, in which an obvious modulation of the phase balance of PbTiO3 is observed. 展开更多
下载PDF
上一页 1 2 9 下一页 到第
使用帮助 返回顶部