With high theoretical energy density and the natural abundance of S, lithium-sulfur (Li-S) batteries areconsidered to be the promising next generation high-energy rechargeable energy storage devices. How-ever, issue...With high theoretical energy density and the natural abundance of S, lithium-sulfur (Li-S) batteries areconsidered to be the promising next generation high-energy rechargeable energy storage devices. How-ever, issues including electronical insulation of S, the lithium polysulfides (LiPSs) dissolution and the shortcycle lifespan have prevented Li-S batteries from being practical applied. Feasible settlements of confiningLiPSs to reduce the loss of active substances and improve the cycle stability include wrapping sulfur withcompact layers, designing matrix with porous or hollow structures, adding adsorbents owning stronginteraction with sulfur and inserting polysulfide barriers between cathodes and separators. This reviewcategorizes them into physical and chemical confinements according to the influencing mechanism. Withfurther discussion of their merits and flaws, synergy of the physical and chemical confinement is believedto be the feasible avenue that can guide Li-S batteries to the practical application.展开更多
There remains a challenge in designing electrocatalysts for water oxidation to create highly efficient catalytic sites for the oxygen evolution reaction(OER)while maintaining their robustness at large outputs.Herein,a...There remains a challenge in designing electrocatalysts for water oxidation to create highly efficient catalytic sites for the oxygen evolution reaction(OER)while maintaining their robustness at large outputs.Herein,an etching-assisted synthesis approach was developed to integrate highly active NiFe2O4 nanoparticles with a robust and active NiOOH scaffold directly on commercial stainless steel.A precise selenization strategy was then introduced to achieve selective Se doping of NiFe2O4 to further enhance its intrinsic OER activity while maintaining a three-dimensional NiOOH nanosheet array as a robust scaffold for prompt mass transfer and gas evolution.The resulting NiFe2O4-xSex/NiOOH electrode exhibited superior electrocatalytic activity with low overpotentials of 153 and 259 mV to deliver benchmark current densities of 10 and 500 mA cm^(−2),respectively.More importantly,the catalyst exhibited remarkable durability at a stable current output of 100 mA cm^(−2)for hundreds of hours.These findings may open up opportunities for exploring efficient and robust electrocatalysts for scalable hydrogen production with practical materials.展开更多
Among the various types of heterogeneous catalysts,supported metal nanocatalysts(SMNCs)have attracted widespread interest in chemistry and materials science,due to their advantageous features,such as high efficiency,s...Among the various types of heterogeneous catalysts,supported metal nanocatalysts(SMNCs)have attracted widespread interest in chemistry and materials science,due to their advantageous features,such as high efficiency,stability,and reusability for catalytic reactions.However,to obtain well-defined SMNCs and inhibit nanoparticle aggregation,traditional approaches generally involve numerous organic reagents,complex steps,and specialized equipment,thus hindering the practical and large-scale synthesis of SMNCs.In this review,we summarize green and sustainable synthetic methodologies for the assembly of SMNCs,including low temperature pyrolysis and solid-state,surfactant-and reductant-free,and ionic liquid assisted syntheses.The conventional application of SMNCs for electrochemical hydrogen evolution and the corresponding achievements are subsequently discussed.Finally,future perspectives toward the sustainable production of SMNCs are presented.展开更多
In recent years,the pursuit of high-efficiency electrochemical storage technology,the multivalent metalion batteries (MIBs) based on aqueous electrolytes have been widely explored by researchers because of their safet...In recent years,the pursuit of high-efficiency electrochemical storage technology,the multivalent metalion batteries (MIBs) based on aqueous electrolytes have been widely explored by researchers because of their safety,environmental friendliness,abundant reserves and low price,and especially the merits in energy and power densities.This review firstly expounds on the problems existing in the electrode materials of aqueous multivalent MIBs (Zn^(2+),Mg^(2+),Al^(3+),Ca^(2+)),from the classical inorganic materials to the emerging organic compounds,and then summarizes the design strategies in bulk and interface structure of electrodes with favorable kinetics and stable cycling performance,especially laying the emphasis on the charge storage mechanism of cathode materials and dendrite-free Zinc anode from the aspect of electrolyte optimization strategies,which can be extended to other aqueous multivalent MIBs.Ultimately,the possible development directions of the aqueous multivalent MIBs in the future are provided,anticipating to provide a meaningful guideline for researchers in this area.展开更多
Coherent anti-Stokes Raman scattering(CARS)is able to enhance molecular signals by vibrational coherence compared to weak Raman signal.The surface or tip enhancement are successful technologies,which make it possible ...Coherent anti-Stokes Raman scattering(CARS)is able to enhance molecular signals by vibrational coherence compared to weak Raman signal.The surface or tip enhancement are successful technologies,which make it possible for Raman to detect single molecule with nanometer resolution.However,due to technical diffculties,tip-enhanced CARS(TECARS)is not as successful as expected.For single molecular detection,high sensitivity and resolution are two main challenges.Here,we reported the first single atom layer TECARS imaging on Graphene with the highest resolution about 20 nm,which has ever been reported.The highest EF_(TECARS/CARS) is about 10^(4),the similar order of magnitude with SECARS(EF of tip is usually smaller than that of substrates).Such resolution and sensitivity is promising for medical,biology and chemical applications in the future.展开更多
Hollow carbon-based nanostructures(HCNs)have found broad applications in various fields,particularly rechargeable batteries.However,the syntheses of HCNs usually rely on template methods,which are time-consuming,low-y...Hollow carbon-based nanostructures(HCNs)have found broad applications in various fields,particularly rechargeable batteries.However,the syntheses of HCNs usually rely on template methods,which are time-consuming,low-yield,and environmentally detrimental.Metal-organic frameworks(MOFs),constructed by organic ligands and inorganic metal nodes,have been identified as effective platforms for preparing HCNs without adding extra templates.This review summarized the recent progress in template-free synthesis of HCNs enabled by MOFs and their applications in rechargeable batteries.Different template-free strategies were introduced first with mechanistic insights into the hollowing mechanism.Then the electrochemical performances of the HCNs were discussed with highlight on the structure-function correlation.It is found that the built-in cavities and nonporous for HCNs is of critical importance to increase the storage sites for high capacity,to enhance charge and mass transport kinetics for high-rate capability,and to ensure the resilient electrode structure for stable cycling.Finally,the challenges and opportunities regarding MOFs-derived HCNs and their applications in rechargeable batteries were discussed.展开更多
The solid electrolyte interphase(SEI),a passivation film covering the electrode surface,is crucial to the lifetime and efficiency of the lithium-ion(Li-ion)battery.Understanding the Li-ion diffusion mechanism within p...The solid electrolyte interphase(SEI),a passivation film covering the electrode surface,is crucial to the lifetime and efficiency of the lithium-ion(Li-ion)battery.Understanding the Li-ion diffusion mechanism within possible components in the mosaic-structured SEI is an essential step to improve the Li-ion conductivity and thus the battery performance.Here,we investigate the Li-ion diffusion mechanism within three amorphous SEI components(i.e.,the inorganic inner layer,organic outer layer,and their mixture with 1:1 molar ratio)via ab initio molecular dynamic(AIMD)simulations.Our simulations show that the Li-ion diffusion coefficient in the inorganic layer is two orders of magnitude faster than that in the organic layer.Therefore,the inorganic layer makes a major contribution to the Li-ion diffusion.Furthermore,we find that the Li-ion diffusivity in the organic layer decreases slightly with the increase of the carbon chain from the methyl to ethyl owing to the steric hindrance induced by large groups.Overall,our current work unravels the Li-ion diffusion mechanism,and provides an atomic-scale insight for the understanding of the Li-ion transport in the SEI components.展开更多
The energy crisis and environmental pollution drive more attention to the development and utilization of renewable energy.Considering the capricious nature of renewable energy resource,it has difficulty supplying elec...The energy crisis and environmental pollution drive more attention to the development and utilization of renewable energy.Considering the capricious nature of renewable energy resource,it has difficulty supplying electricity directly to consumers stably and efficiently,which calls for energy storage systems to collect energy and release electricity at peak periods.Due to their flexible power and energy,quick response,and high energy conversion efficiency,lithium-ion batteries stand out among multiple energy storage technologies and are rapidly deployed in the grid.Pursuing superior performance and ensuring the safety of energy storage systems,intrinsically safe solid-state electrolytes are expected as an ideal alternative to liquid electrolytes.In this review,we systematically evaluate the priorities and issues of traditional lithium-ion batteries in grid energy storage.Beyond lithium-ion batteries containing liquid electrolytes,solid-state lithium-ion batteries have the potential to play a more significant role in grid energy storage.The challenges of developing solid-state lithium-ion batteries,such as low ionic conductivity of the electrolyte,unstable electrode/electrolyte interface,and complicated fabrication process,are discussed in detail.Additionally,the safety of solid-state lithium-ion batteries is re-examined.Following the obtained insights,inspiring prospects for solid-state lithium-ion batteries in grid energy storage are depicted.展开更多
Rechargeable batteries currently hold the largest share of the electrochemical energy storage market,and they play a major role in the sustainable energy transition and industrial decarbonization to respond to global ...Rechargeable batteries currently hold the largest share of the electrochemical energy storage market,and they play a major role in the sustainable energy transition and industrial decarbonization to respond to global climate change.Due to the increased popularity of consumer electronics and electric vehicles,lithium-ion batteries have quickly become the most successful rechargeable batteries in the past three decades,yet growing demands in diversified application scenarios call for new types of rechargeable batteries.Tremendous efforts are made to developing the next-generation post-Li-ion rechargeable batteries,which include,but are not limited to solid-state batteries,lithium–sulfur batteries,sodium-/potassium-ion batteries,organic batteries,magnesium-/zinc-ion batteries,aqueous batteries and flow batteries.Despite the great achievements,challenges persist in precise understandings about the electrochemical reaction and charge transfer process,and optimal design of key materials and interfaces in a battery.This roadmap tends to provide an overview about the current research progress,key challenges and future prospects of various types of rechargeable batteries.New computational methods for materials development,and characterization techniques will also be discussed as they play an important role in battery research.展开更多
Lithium-sulfur(Li-S) batteries have shown promises for the next-generation, high-energy electrochemical storage, yet are hindered by rapid performance decay due to the polysulfide shuttle in the cathode and safety con...Lithium-sulfur(Li-S) batteries have shown promises for the next-generation, high-energy electrochemical storage, yet are hindered by rapid performance decay due to the polysulfide shuttle in the cathode and safety concerns about potential thermal runaway. To address the above challenges, herein, we show a flame-retardant cathode binder that simultaneously improves the electrochemical stability and safety of batteries. The combination of soft and hard segments in the polymer framework of binders allows high flexibility and mechanical strength for adapting to the drastic volume change during the Li(de)intercalation of the S cathode. The binder contains a large number of polar groups, which show the high affinity to polysulfides so that they help to anchor active S species at the cathode. These polar groups also help to regulate and facilitate the Li-ion transport, promoting the kinetics of polysulfide conversion reaction. The binder contains abundant phosphine oxide groups, which, in the case of battery's thermal runaway, decompose and release PO· radicals to quench the combustion reactions and stop the fire. Consequently, Li-S batteries using the new cathode binder show the improved electrochemical performance, including a low-capacity decay of 0.046% per cycle for 800 cycles at 1 C and favorable rate capabilities of up to 3 C. This work offers new insights on the practical realization of high-energy rechargeable batteries with stable storage electrochemistry and high safety.展开更多
Metal sulfides are emerging highly active electrocatalysts for the oxygen evolution reaction(OER),but still suffer from the instability caused by their inevitable reconstruction,especially at industrial-level current ...Metal sulfides are emerging highly active electrocatalysts for the oxygen evolution reaction(OER),but still suffer from the instability caused by their inevitable reconstruction,especially at industrial-level current density.Here,it is discovered that Fe-incorporated Ni3S2 nanowires can deliver extraordinary durability with an ultralow potential degradation rate of 0.006 mV/h in alkaline electrolytes made with fresh water and seawater at a benchmark of 500 mA cm^(-2) while meeting the industrial activity requirement for overpotential less than 300 mV(290 mV).Systematic experiments and theoretical simulations suggest that after forming the S-doped NiFeOOH shell to boost intrinsic activity,Fe incorporation effectivelymitigates the reconstruction of the Ni_(3)S_(2) nanowire core by restraining Ni oxidation and S dissolution,justifying the performance.This work highlights the significance of circumventing reconstruction and provides a strategy to explore practical chalcogenides-based OER electrocatalysts.展开更多
NiFe composites have been regarded as promising candidates to replace commercial noble-based electrocatalysts for the oxygen evolution reaction(OER).However,their practical applications still suffer from poor conducti...NiFe composites have been regarded as promising candidates to replace commercial noble-based electrocatalysts for the oxygen evolution reaction(OER).However,their practical applications still suffer from poor conductivity,limited activity,durability.To address these issues,herein,by utilizing three-dimensional covalent organic framework(3D-COF)with porous confined structures and abundant coordinate N sites as the precursor,the partially oxidized Ni_(3)Fe nanoalloys wrapped by Ndoped carbon(N-C)layers are constructed via simple pyrolysis and subsequent oxidization.Benefiting from the 3D curved hierarchical structure,high-conductivity of Ni_(3)Fe and N-C layers,well-distributed active sites,the as-synthesized O-Ni_(3)Fe-NC catalyst demonstrates excellent activity and durability for catalyzing OER.Experimental and theoretical analyses disclose that both high-temperature oxidization and the OER process greatly promote the formation and exposure of the Ni(Fe)OOH active species as well as lower charge transfer resistance,inducing its optimized OER activity.The robust graphitized N-C layers with superior conductivity and their couplings with oxidized Ni_(3)Fe nanoalloys are beneficial for stabilizing catalytic centers,thereby imparting O-Ni_(3)Fe-N-C with such outstanding stability.This work not only provides a rational guidance for enriching and stabilizing high-activity catalytic sites towards OER but also offers more insights into the structural evolution of NiFe-based OER catalysts.展开更多
Prof.Lixin Dai,a luminary in the field of chemistry,was born in Beijing on November 13,1924.His remarkable journey through the world of science began at Beijing Yuying Middle School in 1936 and continued as he pursued...Prof.Lixin Dai,a luminary in the field of chemistry,was born in Beijing on November 13,1924.His remarkable journey through the world of science began at Beijing Yuying Middle School in 1936 and continued as he pursued his secondary education in Shanghai.In 1942,he embarked on his academic path by enrolling in the Department of Chemistry at the University of Shanghai.In the next year,he transferred to Zhejiang University in Guizhou Province.展开更多
Hollow multishelled structure(HoMS),a promising and complex multifunctional structural system,features at least two shells that are separated by internal voids.The unique structure endows it with numerous advantages i...Hollow multishelled structure(HoMS),a promising and complex multifunctional structural system,features at least two shells that are separated by internal voids.The unique structure endows it with numerous advantages including low density,high loading capacity,large specific surface area,facilitated mass transport,and multiple spatial confinement effect.In the past twenty years,benefiting from the booming development of synthesis methods,various HoMS materials have been prepared and show promising applications in diverse areas.展开更多
To solve the excessive emission of CO_(2) caused by the excessive use of fossil fuels and the corre‐sponding environmental problems,such as the greenhouse effect and climate warming,electrocat‐alytic CO_(2) reductio...To solve the excessive emission of CO_(2) caused by the excessive use of fossil fuels and the corre‐sponding environmental problems,such as the greenhouse effect and climate warming,electrocat‐alytic CO_(2) reduction to liquid fuel with high selectivity is of huge significance for energy conversion and storge.Indium has been considered as a promising and attractive metal for the reduction of CO_(2) to formate.However,the current issues,such as low selectivity and current activity,largely limit the industrial application for electrocatalytic CO_(2) reduction,the design optimization of the catalyst structure and composition is extremely important.Herein,we develop a facile strategy to regulate surface In–O of In@InO_(x) core‐shell nanoparticles and explore the structure‐performance relation‐ship for efficient CO_(2)‐to‐formate conversion though air calcination and subsequent in situ electro‐chemical reconstruction,discovering that the surface In–O is beneficial to stabilize the CO_(2) interme‐diate and generate formate.The optimized AC‐In@InO_(x)‐CNT catalyst exhibits a C1 selectivity up to 98%and a formate selectivity of 94%as well as a high partial formate current density of 32.6 mA cm^(-2).Furthermore,the catalyst presents an excellent stability for over 25 h with a limited activity decay,outperforming the previously reported In‐based catalysts.These insights may open up op‐portunities for exploiting new efficient catalysts by manipulating their surface.展开更多
Size-related properties of novel lithium battery materials, arising from kinetics, thermodynamics, and newly discov- ered lithium storage mechanisms, are reviewed. Complementary experimental and computational investig...Size-related properties of novel lithium battery materials, arising from kinetics, thermodynamics, and newly discov- ered lithium storage mechanisms, are reviewed. Complementary experimental and computational investigations of the use of the size effects to modify electrodes and electrolytes for lithium ion batteries are enumerated and discussed together. Size differences in the materials in lithium ion batteries lead to a variety of exciting phenomena. Smaller-particle materials with highly connective interfaces and reduced diffusion paths exhibit higher rate performance than the corresponding bulk materials. The thermodynamics is also changed by the higher surface energy of smaller particles, affecting, for example, secondary surface reactions, lattice parameter, voltage, and the phase transformation mechanism. Newly discovered lithium storage mechanisms that result in superior storage capacity are also briefly highlighted.展开更多
Micrometre-sized electrode materials have distinct advantages for battery applications in terms of energy density,processability,safety and cost.For the silicon monoxide anode that undergoes electrochemical alloying r...Micrometre-sized electrode materials have distinct advantages for battery applications in terms of energy density,processability,safety and cost.For the silicon monoxide anode that undergoes electrochemical alloying reaction with Li,the Li(de)intercalation by micron-sized active particles usually accompanies with a large volume variation,which pulverizes the particle structure and leads to rapidly faded storage performance.In this work,we proposed to stabilize the electrochemistry vs.Li of the micron-SiO_(x) anode by forming a rigid-flexible bi-layer coati ng on the particle surface.The coati ng consists of pyrolysis carbon as the inner layer and polydopamine as the outer layer.While the inner layer guarantees high structural rigidity at particle surface and provides efficient pathway for electron conduction,the outer layer shows high flexibility for maintaining the integrity of micrometre-sized particles against drastic volume variation,and together they facilitate formation of stable solid electrolyte interface on the SiO_(x) particles.A composite an ode prepared by mixing the coated micron-SiOx with graphite delivered improved Li storage performance,and promised a high-capacity,long-life LiFePO_(4)/SiO_(x)-graphite pouch cell.Our strategy provides a general and feasible solution for building high-energy rechargeable batteries from micrometre-sized electrode materials with significant volume variation.展开更多
Enormous LiFePO_(4)(LFP)/graphite batteries retired from the market need urgent rational disposal and reutilization based on the degradation analysis of the evolutional mechanism for electrodes.Typically,Li inventory ...Enormous LiFePO_(4)(LFP)/graphite batteries retired from the market need urgent rational disposal and reutilization based on the degradation analysis of the evolutional mechanism for electrodes.Typically,Li inventory loss is one of the main reasons for the degradation of LFP-based batteries.The reduced portion of lithium in a cathode is inevitably consumed to form solid electrolyte interphase or trapped in the anode.Herein,we propose a comprehensive strategy for battery recycling and conduct the work by simply regenerating the degraded LFP materials directly with the extracted lithium compounds from spent anodes.Moreover,inter-particle three-dimensional(3D)conductive networks are built via an in situ carbonization to reinforce the electronic conductivity of regenerated cathodes.An improved electrochemical performance was achieved in the regenerated LFP materials even compared with the pristine LFP.This integrated recycling strategy not only brings more added value to the recycled materials by leveraging the recycling process but also aims to apply the concept of“treating waste with waste”and spur innovations in battery recycling technologies in the future.展开更多
We report the in-situ investigation of the production of H_(2)O_(2)in 5,10,15,20-tetra(4-methoxyphenyl)-21H,23H-porphyrin cobalt(Ⅱ)(Co TMPP)-catalyzed oxygen reduction reaction(ORR)in neutral electrolytes by electroc...We report the in-situ investigation of the production of H_(2)O_(2)in 5,10,15,20-tetra(4-methoxyphenyl)-21H,23H-porphyrin cobalt(Ⅱ)(Co TMPP)-catalyzed oxygen reduction reaction(ORR)in neutral electrolytes by electrochemical scanning tunneling microscopy(ECSTM)at the molecular scale.The adsorption of OOH-on active sites can be observed in STM images and is found to be correlated with the pH value of the electrolyte.The thermodynamic parameters of the formation of Co TMPP–OOHcomplex are extracted by the quantitative analysis of the STM images.Two stages of the ORR including the formation of H_(2)O_(2)and further reduction of H_(2)O_(2)at different reduction potentials can be revealed by electrochemical measurements.In-situ ECSTM experiments unambiguously identify the formation of the Co TMPP–OOH-complex as the high contrast species and its reduction and oxidation process.This work provides the direct evidence for understanding the formation and transformation process of H_(2)O_(2)at the molecular scale,which benefits the rational design of the high-efficiency electrocatalysts for ORR and H_(2)O_(2)production.展开更多
The development of lithium(Li)metal batteries has been severely limited by the formation of lithium dendrites and the associated catastrophic failure and inferior Coulombic efficiency which caused by non-uniform or in...The development of lithium(Li)metal batteries has been severely limited by the formation of lithium dendrites and the associated catastrophic failure and inferior Coulombic efficiency which caused by non-uniform or insufficient Li^(+)supply across the electrode-electrolyte interface.Therefore,a rational strategy is to construct a robust electrolyte that can allow efficient and uniform Li^(+)transport to ensure sufficient Li^(+)supply and homogenize the Li plating/stripping.Herein,we report an ion-percolating electrolyte membrane that acts as a stable Li^(+)reservoir to ensure a near-single Li^(+)transference number(0.78)and homogenizes Li^(+)migration to eradicate dendrite growth,endowing Li//LFP cell with an ultrahigh average Coulombic efficiency(ca.99.97%)after cycling for nearly half of a year and superior cycling stability when pairing with LiCoO_(2) with limited Li amount and LiNi_(0.8)Mn_(0.1)Co_(0.1)O_(2).These estimable attributes demonstrate significant potential of utility value for the ion-percolating electrolyte.展开更多
基金supported by Basic Science Center Project of National Natural Science Foundation of China under grant No.51788104the National Natural Science Foundation of China (grant nos.51772301 and 21773264)+1 种基金the National Key R&D Program of China (grant no.2016YFA0202500)the “Strategic Priority Research Program” of the Chinese Academy of Sciences (grant no.XDA09010300)
文摘With high theoretical energy density and the natural abundance of S, lithium-sulfur (Li-S) batteries areconsidered to be the promising next generation high-energy rechargeable energy storage devices. How-ever, issues including electronical insulation of S, the lithium polysulfides (LiPSs) dissolution and the shortcycle lifespan have prevented Li-S batteries from being practical applied. Feasible settlements of confiningLiPSs to reduce the loss of active substances and improve the cycle stability include wrapping sulfur withcompact layers, designing matrix with porous or hollow structures, adding adsorbents owning stronginteraction with sulfur and inserting polysulfide barriers between cathodes and separators. This reviewcategorizes them into physical and chemical confinements according to the influencing mechanism. Withfurther discussion of their merits and flaws, synergy of the physical and chemical confinement is believedto be the feasible avenue that can guide Li-S batteries to the practical application.
文摘There remains a challenge in designing electrocatalysts for water oxidation to create highly efficient catalytic sites for the oxygen evolution reaction(OER)while maintaining their robustness at large outputs.Herein,an etching-assisted synthesis approach was developed to integrate highly active NiFe2O4 nanoparticles with a robust and active NiOOH scaffold directly on commercial stainless steel.A precise selenization strategy was then introduced to achieve selective Se doping of NiFe2O4 to further enhance its intrinsic OER activity while maintaining a three-dimensional NiOOH nanosheet array as a robust scaffold for prompt mass transfer and gas evolution.The resulting NiFe2O4-xSex/NiOOH electrode exhibited superior electrocatalytic activity with low overpotentials of 153 and 259 mV to deliver benchmark current densities of 10 and 500 mA cm^(−2),respectively.More importantly,the catalyst exhibited remarkable durability at a stable current output of 100 mA cm^(−2)for hundreds of hours.These findings may open up opportunities for exploring efficient and robust electrocatalysts for scalable hydrogen production with practical materials.
文摘Among the various types of heterogeneous catalysts,supported metal nanocatalysts(SMNCs)have attracted widespread interest in chemistry and materials science,due to their advantageous features,such as high efficiency,stability,and reusability for catalytic reactions.However,to obtain well-defined SMNCs and inhibit nanoparticle aggregation,traditional approaches generally involve numerous organic reagents,complex steps,and specialized equipment,thus hindering the practical and large-scale synthesis of SMNCs.In this review,we summarize green and sustainable synthetic methodologies for the assembly of SMNCs,including low temperature pyrolysis and solid-state,surfactant-and reductant-free,and ionic liquid assisted syntheses.The conventional application of SMNCs for electrochemical hydrogen evolution and the corresponding achievements are subsequently discussed.Finally,future perspectives toward the sustainable production of SMNCs are presented.
基金supported by the National Key R&D Program of China(2016YFA0202500)the Natural Science Foundation of China(51803054,51772093)+1 种基金the Natural Science Foundation of Hunan province(2020JJ3022,2019JJ50223,2019JJ20010)the foundation from Education Department of Hunan Province(19B270,SYL201802008)。
文摘In recent years,the pursuit of high-efficiency electrochemical storage technology,the multivalent metalion batteries (MIBs) based on aqueous electrolytes have been widely explored by researchers because of their safety,environmental friendliness,abundant reserves and low price,and especially the merits in energy and power densities.This review firstly expounds on the problems existing in the electrode materials of aqueous multivalent MIBs (Zn^(2+),Mg^(2+),Al^(3+),Ca^(2+)),from the classical inorganic materials to the emerging organic compounds,and then summarizes the design strategies in bulk and interface structure of electrodes with favorable kinetics and stable cycling performance,especially laying the emphasis on the charge storage mechanism of cathode materials and dendrite-free Zinc anode from the aspect of electrolyte optimization strategies,which can be extended to other aqueous multivalent MIBs.Ultimately,the possible development directions of the aqueous multivalent MIBs in the future are provided,anticipating to provide a meaningful guideline for researchers in this area.
基金We gratefully acknowledge the support from the National Natural Science Foundation of China(Nos.21735006 and 21127901),and the CAS Key Technology Talent Program.
文摘Coherent anti-Stokes Raman scattering(CARS)is able to enhance molecular signals by vibrational coherence compared to weak Raman signal.The surface or tip enhancement are successful technologies,which make it possible for Raman to detect single molecule with nanometer resolution.However,due to technical diffculties,tip-enhanced CARS(TECARS)is not as successful as expected.For single molecular detection,high sensitivity and resolution are two main challenges.Here,we reported the first single atom layer TECARS imaging on Graphene with the highest resolution about 20 nm,which has ever been reported.The highest EF_(TECARS/CARS) is about 10^(4),the similar order of magnitude with SECARS(EF of tip is usually smaller than that of substrates).Such resolution and sensitivity is promising for medical,biology and chemical applications in the future.
基金supported by the National Natural Science Foundation of China(21931012,22025507,22109052)Guangdong Basic and Applied Basic Research Foundation(2022B1515020001)+1 种基金Guangzhou Science and Technology Program(202201010703)the Fundamental Research Funds for the Central Universities(21621033)。
文摘Hollow carbon-based nanostructures(HCNs)have found broad applications in various fields,particularly rechargeable batteries.However,the syntheses of HCNs usually rely on template methods,which are time-consuming,low-yield,and environmentally detrimental.Metal-organic frameworks(MOFs),constructed by organic ligands and inorganic metal nodes,have been identified as effective platforms for preparing HCNs without adding extra templates.This review summarized the recent progress in template-free synthesis of HCNs enabled by MOFs and their applications in rechargeable batteries.Different template-free strategies were introduced first with mechanistic insights into the hollowing mechanism.Then the electrochemical performances of the HCNs were discussed with highlight on the structure-function correlation.It is found that the built-in cavities and nonporous for HCNs is of critical importance to increase the storage sites for high capacity,to enhance charge and mass transport kinetics for high-rate capability,and to ensure the resilient electrode structure for stable cycling.Finally,the challenges and opportunities regarding MOFs-derived HCNs and their applications in rechargeable batteries were discussed.
基金R.Wen acknowledges the financial support from the National Key R&D Program of China(No.2021YFB2500300)the CAS Project for Young Scientists in Basic Research(No.YSBR-058)+2 种基金S.Xu acknowledges funding support from the Chinese Ministry of Science and Technology(No.2021YFB3800303)DP Technology Corporation(No.2021110016001141)the School of Materials Science and Engineering at Peking University.
文摘The solid electrolyte interphase(SEI),a passivation film covering the electrode surface,is crucial to the lifetime and efficiency of the lithium-ion(Li-ion)battery.Understanding the Li-ion diffusion mechanism within possible components in the mosaic-structured SEI is an essential step to improve the Li-ion conductivity and thus the battery performance.Here,we investigate the Li-ion diffusion mechanism within three amorphous SEI components(i.e.,the inorganic inner layer,organic outer layer,and their mixture with 1:1 molar ratio)via ab initio molecular dynamic(AIMD)simulations.Our simulations show that the Li-ion diffusion coefficient in the inorganic layer is two orders of magnitude faster than that in the organic layer.Therefore,the inorganic layer makes a major contribution to the Li-ion diffusion.Furthermore,we find that the Li-ion diffusivity in the organic layer decreases slightly with the increase of the carbon chain from the methyl to ethyl owing to the steric hindrance induced by large groups.Overall,our current work unravels the Li-ion diffusion mechanism,and provides an atomic-scale insight for the understanding of the Li-ion transport in the SEI components.
基金supported by the National Key R&D Program of China(2021YFB2400200)the CAS Project for Young Scientists in Basic Research(YSBR-058)+4 种基金the“Transformational Technologies for Clean Energy and Demonstration”,Strategic Priority Research Program of the Chinese Academy of Sciences(XDA21070300)the National Natural Science Foundation of China(22279148,21905286 and 22005314)the China Postdoctoral Science Foundation(2019M660805)the Special Financial Grant from the China Postdoctoral Science Foundation(2020T130658)Beijing National Laboratory for Molecular Sciences(2019BMS20022)。
文摘The energy crisis and environmental pollution drive more attention to the development and utilization of renewable energy.Considering the capricious nature of renewable energy resource,it has difficulty supplying electricity directly to consumers stably and efficiently,which calls for energy storage systems to collect energy and release electricity at peak periods.Due to their flexible power and energy,quick response,and high energy conversion efficiency,lithium-ion batteries stand out among multiple energy storage technologies and are rapidly deployed in the grid.Pursuing superior performance and ensuring the safety of energy storage systems,intrinsically safe solid-state electrolytes are expected as an ideal alternative to liquid electrolytes.In this review,we systematically evaluate the priorities and issues of traditional lithium-ion batteries in grid energy storage.Beyond lithium-ion batteries containing liquid electrolytes,solid-state lithium-ion batteries have the potential to play a more significant role in grid energy storage.The challenges of developing solid-state lithium-ion batteries,such as low ionic conductivity of the electrolyte,unstable electrode/electrolyte interface,and complicated fabrication process,are discussed in detail.Additionally,the safety of solid-state lithium-ion batteries is re-examined.Following the obtained insights,inspiring prospects for solid-state lithium-ion batteries in grid energy storage are depicted.
基金supported by the CAS Project for Young Scientists in Basic Research(YSBR-058)the Basic Science Center Project of National Natural Science Foundation of China(52388201)+57 种基金the Beijing Natural Science Foundation(JQ22005)financially supported by the National Key R&D Program of China(2022YFB2404400)the National Natural Science Foundation of China(92263206,21875007,21975006,21974007,and U19A2018)the Youth Beijing Scholars program(PXM2021_014204_000023)the Beijing Natural Science Foundation(2222001 and KZ202010005007)supported by the National Key R&D Program of China(2021YFB2400200)the Youth Innovation Promotion Association CAS(2023040)the National Natural Science Foundation of China(22279148 and 21905286)the Beijing Natural Science Foundation(Z220021)supported by Beijing Municipal Natural Science Foundation(Z200011)National Key Research and Development Program(2021YFB2500300,2021YFB2400300)National Natural Science Foundation of China(22308190,22109084,22108151,22075029,and 22061132002)Key Research and Development Program of Yunnan Province(202103AA080019)the S&T Program of Hebei Province(22344402D)China Postdoctoral Science Foundation(2022TQ0165)Tsinghua-Jiangyin Innovation Special Fund(TJISF)Tsinghua-Toyota Joint Research Fundthe Institute of Strategic Research,Huawei Technologies Co.,LtdOrdos-Tsinghua Innovative&Collaborative Research Program in Carbon Neutralitythe Shuimu Tsinghua Scholar Program of Tsinghua Universityfinancially supported by the National Key R&D Program of China(2021YFB2400300)National Natural Science Foundation of China(22179083)Program of Shanghai Academic Research Leader(20XD1401900)Key-Area Research and Development Program of Guangdong Province(2019B090908001)financially supported by the National Key R&D Program of China(2020YFE0204500)the National Natural Science Foundation of China(52071311,52271140)Jilin Province Science and Technology Development Plan Funding Project(20220201112GX)Changchun Science and Technology Development Plan Funding Project(21ZY06)Youth Innovation Promotion Association CAS(2020230,2021223)supported by the National Natural Science Foundation of China(51971124,52171217,52202284 and 52250710680)the State Key Laboratory of Electrical Insulation and Power Equipment,Xi’an Jiaotong University(EIPE22208)Zhejiang Natural Science Foundation(LZ21E010001,LQ23E020002)Wenzhou Natural Science Foundation(G20220019,G20220021,ZG2022032,G2023027)Science and Technology Project of State Grid Corporation of China(5419-202158503A-0-5-ZN)Wenzhou Key Scientific and Technological Innovation Research Projects(ZG2023053)Cooperation between industry and education project of Ministry of Education(220601318235513)supported by the Australian Research Council(DP210101486 and FL210100050)supported by the National Natural Science Foundation of China(22179135,22109168,52072195,and 21975271)the Strategic Priority Research Program of the Chinese Academy of Sciences(XDA22010603,XDA22010600)Taishan Scholars Program for Young Expert of Shandong Province(tsqn202103145)Shandong Energy Institute(SEI I202108 and SEI I202127)the China Postdoctoral Science Foundation(BX20200344,2020M682251)supported by the National Key R&D Program of China(2022YFB2402200)the National Natural Science Foundation of China(22121005,22020102002,and 21835004)the Frontiers Science Center for New Organic Matter of Nankai University(63181206)the Haihe Laboratory of Sustainable Chemical Transformationssupported by National Key Research and Development Program of China(2022YFB2404500)Shenzhen Outstanding Talents Training Fundsupported by the National Key R&D Program of China(2019YFA0705104)GRF under the project number City U 11305218supported from National Natural Science Foundation of China(22078313,21925804)Free exploring basic research project of Liaoning(2022JH6/100100005)Youth Innovation Promotion Association CAS(2019182)supported from the Research Center for industries of the Future(RCIF)at Westlake Universitythe start-up fund from Westlake Universitysupported by the National Key R&D Program of China(2020YFB2007400)the National Natural Science Foundation of China(22075317)the Strategic Priority Research Program(B)(XDB07030200)of Chinese Academy of Sciences。
文摘Rechargeable batteries currently hold the largest share of the electrochemical energy storage market,and they play a major role in the sustainable energy transition and industrial decarbonization to respond to global climate change.Due to the increased popularity of consumer electronics and electric vehicles,lithium-ion batteries have quickly become the most successful rechargeable batteries in the past three decades,yet growing demands in diversified application scenarios call for new types of rechargeable batteries.Tremendous efforts are made to developing the next-generation post-Li-ion rechargeable batteries,which include,but are not limited to solid-state batteries,lithium–sulfur batteries,sodium-/potassium-ion batteries,organic batteries,magnesium-/zinc-ion batteries,aqueous batteries and flow batteries.Despite the great achievements,challenges persist in precise understandings about the electrochemical reaction and charge transfer process,and optimal design of key materials and interfaces in a battery.This roadmap tends to provide an overview about the current research progress,key challenges and future prospects of various types of rechargeable batteries.New computational methods for materials development,and characterization techniques will also be discussed as they play an important role in battery research.
基金financially supported by the National Key R&D Program of China(2019YFA0705703)Natural Science Foundation of Hubei Province(2021CFB082)+4 种基金Scientific Research Foundation of Wuhan Institute of Technology(K2021042)the Open Key Fund Project of State Key Laboratory of Advanced Technology for Materials Synthesis and Processing(Wuhan University of Technology,2022-KF-10)National Natural Science Foundation of China(22275142,U22B6011)China Postdoctoral Science Foundation(2021M703268)the Junior Fellow Program of Beijing National Laboratory for Molecular Sciences(2021BMS20062)。
文摘Lithium-sulfur(Li-S) batteries have shown promises for the next-generation, high-energy electrochemical storage, yet are hindered by rapid performance decay due to the polysulfide shuttle in the cathode and safety concerns about potential thermal runaway. To address the above challenges, herein, we show a flame-retardant cathode binder that simultaneously improves the electrochemical stability and safety of batteries. The combination of soft and hard segments in the polymer framework of binders allows high flexibility and mechanical strength for adapting to the drastic volume change during the Li(de)intercalation of the S cathode. The binder contains a large number of polar groups, which show the high affinity to polysulfides so that they help to anchor active S species at the cathode. These polar groups also help to regulate and facilitate the Li-ion transport, promoting the kinetics of polysulfide conversion reaction. The binder contains abundant phosphine oxide groups, which, in the case of battery's thermal runaway, decompose and release PO· radicals to quench the combustion reactions and stop the fire. Consequently, Li-S batteries using the new cathode binder show the improved electrochemical performance, including a low-capacity decay of 0.046% per cycle for 800 cycles at 1 C and favorable rate capabilities of up to 3 C. This work offers new insights on the practical realization of high-energy rechargeable batteries with stable storage electrochemistry and high safety.
基金the National Key Research and Development Program of China(grant no.2021YFA1501002)National Natural Science Foundation of China(grant nos.22025208,22075300,and 21902162)+1 种基金DNL Cooperation Fund,CAS(grant no.DNL202008)Chinese Academy of Sciences,and Australian Research Council(grant no.DE220100746).
文摘Metal sulfides are emerging highly active electrocatalysts for the oxygen evolution reaction(OER),but still suffer from the instability caused by their inevitable reconstruction,especially at industrial-level current density.Here,it is discovered that Fe-incorporated Ni3S2 nanowires can deliver extraordinary durability with an ultralow potential degradation rate of 0.006 mV/h in alkaline electrolytes made with fresh water and seawater at a benchmark of 500 mA cm^(-2) while meeting the industrial activity requirement for overpotential less than 300 mV(290 mV).Systematic experiments and theoretical simulations suggest that after forming the S-doped NiFeOOH shell to boost intrinsic activity,Fe incorporation effectivelymitigates the reconstruction of the Ni_(3)S_(2) nanowire core by restraining Ni oxidation and S dissolution,justifying the performance.This work highlights the significance of circumventing reconstruction and provides a strategy to explore practical chalcogenides-based OER electrocatalysts.
基金the National Natural Science Foundation of China(Nos.22075062 and 21871167)and the Volkswagen Foundation(Freigeist Fellowship)。
文摘NiFe composites have been regarded as promising candidates to replace commercial noble-based electrocatalysts for the oxygen evolution reaction(OER).However,their practical applications still suffer from poor conductivity,limited activity,durability.To address these issues,herein,by utilizing three-dimensional covalent organic framework(3D-COF)with porous confined structures and abundant coordinate N sites as the precursor,the partially oxidized Ni_(3)Fe nanoalloys wrapped by Ndoped carbon(N-C)layers are constructed via simple pyrolysis and subsequent oxidization.Benefiting from the 3D curved hierarchical structure,high-conductivity of Ni_(3)Fe and N-C layers,well-distributed active sites,the as-synthesized O-Ni_(3)Fe-NC catalyst demonstrates excellent activity and durability for catalyzing OER.Experimental and theoretical analyses disclose that both high-temperature oxidization and the OER process greatly promote the formation and exposure of the Ni(Fe)OOH active species as well as lower charge transfer resistance,inducing its optimized OER activity.The robust graphitized N-C layers with superior conductivity and their couplings with oxidized Ni_(3)Fe nanoalloys are beneficial for stabilizing catalytic centers,thereby imparting O-Ni_(3)Fe-N-C with such outstanding stability.This work not only provides a rational guidance for enriching and stabilizing high-activity catalytic sites towards OER but also offers more insights into the structural evolution of NiFe-based OER catalysts.
文摘Prof.Lixin Dai,a luminary in the field of chemistry,was born in Beijing on November 13,1924.His remarkable journey through the world of science began at Beijing Yuying Middle School in 1936 and continued as he pursued his secondary education in Shanghai.In 1942,he embarked on his academic path by enrolling in the Department of Chemistry at the University of Shanghai.In the next year,he transferred to Zhejiang University in Guizhou Province.
基金This work was supported by the National Natural Science Foundation of China(Nos.21931012,21821005,92163209,52272097,52202354,22293043,52261160573,52072369,and 52301296)the Zhongke-Yuneng Joint R&D Center Program,China(No.ZKYN2022008).
文摘Hollow multishelled structure(HoMS),a promising and complex multifunctional structural system,features at least two shells that are separated by internal voids.The unique structure endows it with numerous advantages including low density,high loading capacity,large specific surface area,facilitated mass transport,and multiple spatial confinement effect.In the past twenty years,benefiting from the booming development of synthesis methods,various HoMS materials have been prepared and show promising applications in diverse areas.
文摘To solve the excessive emission of CO_(2) caused by the excessive use of fossil fuels and the corre‐sponding environmental problems,such as the greenhouse effect and climate warming,electrocat‐alytic CO_(2) reduction to liquid fuel with high selectivity is of huge significance for energy conversion and storge.Indium has been considered as a promising and attractive metal for the reduction of CO_(2) to formate.However,the current issues,such as low selectivity and current activity,largely limit the industrial application for electrocatalytic CO_(2) reduction,the design optimization of the catalyst structure and composition is extremely important.Herein,we develop a facile strategy to regulate surface In–O of In@InO_(x) core‐shell nanoparticles and explore the structure‐performance relation‐ship for efficient CO_(2)‐to‐formate conversion though air calcination and subsequent in situ electro‐chemical reconstruction,discovering that the surface In–O is beneficial to stabilize the CO_(2) interme‐diate and generate formate.The optimized AC‐In@InO_(x)‐CNT catalyst exhibits a C1 selectivity up to 98%and a formate selectivity of 94%as well as a high partial formate current density of 32.6 mA cm^(-2).Furthermore,the catalyst presents an excellent stability for over 25 h with a limited activity decay,outperforming the previously reported In‐based catalysts.These insights may open up op‐portunities for exploiting new efficient catalysts by manipulating their surface.
基金supported by the National Natural Science Foundation of China(Grant Nos.51225204 and 21303222)the Shandong Taishan Scholarship,China+1 种基金the Ministry of Science and Technology,China(Grant No.2012CB932900)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDA09010000)
文摘Size-related properties of novel lithium battery materials, arising from kinetics, thermodynamics, and newly discov- ered lithium storage mechanisms, are reviewed. Complementary experimental and computational investigations of the use of the size effects to modify electrodes and electrolytes for lithium ion batteries are enumerated and discussed together. Size differences in the materials in lithium ion batteries lead to a variety of exciting phenomena. Smaller-particle materials with highly connective interfaces and reduced diffusion paths exhibit higher rate performance than the corresponding bulk materials. The thermodynamics is also changed by the higher surface energy of smaller particles, affecting, for example, secondary surface reactions, lattice parameter, voltage, and the phase transformation mechanism. Newly discovered lithium storage mechanisms that result in superior storage capacity are also briefly highlighted.
基金supported by the Innovation Team for R&D and Industrialization of High Energy Density Si-based Power batteries (2018607219003)the Basic Science Center Project of National Natural Science Foundation of China (51788104)+2 种基金the National Key R&D Program of China (2019YFA0705600)the “Transformational Technologies for Clean Energy and Demonstration”Strategic Priority Research Program of the Chinese Academy of Sciences (XDA21070300).
文摘Micrometre-sized electrode materials have distinct advantages for battery applications in terms of energy density,processability,safety and cost.For the silicon monoxide anode that undergoes electrochemical alloying reaction with Li,the Li(de)intercalation by micron-sized active particles usually accompanies with a large volume variation,which pulverizes the particle structure and leads to rapidly faded storage performance.In this work,we proposed to stabilize the electrochemistry vs.Li of the micron-SiO_(x) anode by forming a rigid-flexible bi-layer coati ng on the particle surface.The coati ng consists of pyrolysis carbon as the inner layer and polydopamine as the outer layer.While the inner layer guarantees high structural rigidity at particle surface and provides efficient pathway for electron conduction,the outer layer shows high flexibility for maintaining the integrity of micrometre-sized particles against drastic volume variation,and together they facilitate formation of stable solid electrolyte interface on the SiO_(x) particles.A composite an ode prepared by mixing the coated micron-SiOx with graphite delivered improved Li storage performance,and promised a high-capacity,long-life LiFePO_(4)/SiO_(x)-graphite pouch cell.Our strategy provides a general and feasible solution for building high-energy rechargeable batteries from micrometre-sized electrode materials with significant volume variation.
基金supported by the Basic Science Center Project of the National Natural Science Foundation of China under grant no.51788104,the National Key R&D Program of China(grant no.2021YFB2400200)the National Natural Science Foundation of China(grant nos.21905286,21773264,51772301)the“Transformational Technologies for Clean Energy and Demonstration,”Strategic Priority Research Program of the Chinese Academy of Sciences,grant no.XDA21070300.
文摘Enormous LiFePO_(4)(LFP)/graphite batteries retired from the market need urgent rational disposal and reutilization based on the degradation analysis of the evolutional mechanism for electrodes.Typically,Li inventory loss is one of the main reasons for the degradation of LFP-based batteries.The reduced portion of lithium in a cathode is inevitably consumed to form solid electrolyte interphase or trapped in the anode.Herein,we propose a comprehensive strategy for battery recycling and conduct the work by simply regenerating the degraded LFP materials directly with the extracted lithium compounds from spent anodes.Moreover,inter-particle three-dimensional(3D)conductive networks are built via an in situ carbonization to reinforce the electronic conductivity of regenerated cathodes.An improved electrochemical performance was achieved in the regenerated LFP materials even compared with the pristine LFP.This integrated recycling strategy not only brings more added value to the recycled materials by leveraging the recycling process but also aims to apply the concept of“treating waste with waste”and spur innovations in battery recycling technologies in the future.
基金supported by the National Key R&D Program of China(2021YFA1501002)the National Natural Science Foundation of China(21725306 and 21972147)+1 种基金the Key Research Program of the Chinese Academy of Sciences(XDPB01)the National Postdoctoral Program for Innovative Talents(BX20220307)of the Chinese Postdoctoral Science Foundation。
文摘We report the in-situ investigation of the production of H_(2)O_(2)in 5,10,15,20-tetra(4-methoxyphenyl)-21H,23H-porphyrin cobalt(Ⅱ)(Co TMPP)-catalyzed oxygen reduction reaction(ORR)in neutral electrolytes by electrochemical scanning tunneling microscopy(ECSTM)at the molecular scale.The adsorption of OOH-on active sites can be observed in STM images and is found to be correlated with the pH value of the electrolyte.The thermodynamic parameters of the formation of Co TMPP–OOHcomplex are extracted by the quantitative analysis of the STM images.Two stages of the ORR including the formation of H_(2)O_(2)and further reduction of H_(2)O_(2)at different reduction potentials can be revealed by electrochemical measurements.In-situ ECSTM experiments unambiguously identify the formation of the Co TMPP–OOH-complex as the high contrast species and its reduction and oxidation process.This work provides the direct evidence for understanding the formation and transformation process of H_(2)O_(2)at the molecular scale,which benefits the rational design of the high-efficiency electrocatalysts for ORR and H_(2)O_(2)production.
基金National Natural Science Foundation of China,Grant/Award Number:51803054Basic Science Center Project of the National Key R&D Program of China,Grant/Award Number:2021YFB2400400+2 种基金Science and Technology Innovation Program of Hunan Province,Grant/Award Number:2023RC3154Natural Science Foundation of Hunan Province,Grant/Award Numbers:2019JJ50223,2020JJ3022Foundation from Education Department of Hunan Province,Grant/Award Number:19B270。
文摘The development of lithium(Li)metal batteries has been severely limited by the formation of lithium dendrites and the associated catastrophic failure and inferior Coulombic efficiency which caused by non-uniform or insufficient Li^(+)supply across the electrode-electrolyte interface.Therefore,a rational strategy is to construct a robust electrolyte that can allow efficient and uniform Li^(+)transport to ensure sufficient Li^(+)supply and homogenize the Li plating/stripping.Herein,we report an ion-percolating electrolyte membrane that acts as a stable Li^(+)reservoir to ensure a near-single Li^(+)transference number(0.78)and homogenizes Li^(+)migration to eradicate dendrite growth,endowing Li//LFP cell with an ultrahigh average Coulombic efficiency(ca.99.97%)after cycling for nearly half of a year and superior cycling stability when pairing with LiCoO_(2) with limited Li amount and LiNi_(0.8)Mn_(0.1)Co_(0.1)O_(2).These estimable attributes demonstrate significant potential of utility value for the ion-percolating electrolyte.