We develop universal quantum computing models that form a family of quantum von Neumann architectures,with modular units of memory,control,CPU,and internet,besides input and output.This family contains three generatio...We develop universal quantum computing models that form a family of quantum von Neumann architectures,with modular units of memory,control,CPU,and internet,besides input and output.This family contains three generations characterized by dynamical quantum resource theory,and it also circumvents no-go theorems on quantum programming and control.Besides universality,such a family satisfies other desirable engineering requirements on system and algorithm design,such as modularity and programmability,hence serves as a unique approach to building universal quantum computers.展开更多
In 2021,the Belle collaboration reported the first observation of a new structure in theψ(2S)γfinal state produced in the two-photon fusion process.In the hadronic molecule picture,this new structure can be associat...In 2021,the Belle collaboration reported the first observation of a new structure in theψ(2S)γfinal state produced in the two-photon fusion process.In the hadronic molecule picture,this new structure can be associatedwith the shallow isoscalar D*D* bound state and as such is an excellent candidate for the spin-2 partner of the X(3872)with the quantum numbers J^(PC)=2^(++)conventionally named X_(2).展开更多
Strong empirical and phenomenological indications exist for large sea-quark admixtures in the low-lying excited baryons.Investigating the low-lying excited baryon ∑^(*)(1/2^(-))is important for determining the nature...Strong empirical and phenomenological indications exist for large sea-quark admixtures in the low-lying excited baryons.Investigating the low-lying excited baryon ∑^(*)(1/2^(-))is important for determining the nature of the low-lying excited baryons.We review the experimental and theoretical progress on the studies of the ∑^(*)(1/2^(-)).展开更多
Quantum information processing based on Rydberg atoms emerged as a promising direction two decades ago.Recent experimental and theoretical progresses have shined exciting light on this avenue.In this concise review,we...Quantum information processing based on Rydberg atoms emerged as a promising direction two decades ago.Recent experimental and theoretical progresses have shined exciting light on this avenue.In this concise review,we will briefly introduce the basics of Rydberg atoms and their recent applications in associated areas of neutral atom quantum computation and simulation.We shall also include related discussions on quantum optics with Rydberg atomic ensembles,which are increasingly used to explore quantum computation and quantum simulation with photons.展开更多
To understand the intriguing many-body states and effects in the correlated quantum materials,inference of the microscopic effective Hamiltonian from experiments constitutes an important yet very challenging inverse p...To understand the intriguing many-body states and effects in the correlated quantum materials,inference of the microscopic effective Hamiltonian from experiments constitutes an important yet very challenging inverse problem.Here we propose an unbiased and efficient approach learning the effective Hamiltonian through the many-body analysis of the measured thermal data.Our approach combines the strategies including the automatic gradient and Bayesian optimization with the thermodynamics many-body solvers including the exact diagonalization and the tensor renormalization group methods.We showcase the accuracy and powerfulness of the Hamiltonian learning by applying it firstly to the thermal data generated from a given spin model,and then to realistic experimental data measured in the spin-chain compound copper nitrate and triangular-lattice magnet TmMgGaO_(4).The present automatic approach constitutes a unified framework of many-body thermal data analysis in the studies of quantum magnets and strongly correlated materials in general.展开更多
In space-based gravitational wave detection, the estimation of far-field wavefront error of the distorted beam is the precondition for the noise reduction. Zernike polynomials are used to describe the wavefront error ...In space-based gravitational wave detection, the estimation of far-field wavefront error of the distorted beam is the precondition for the noise reduction. Zernike polynomials are used to describe the wavefront error of the transmitted distorted beam. The propagation of a laser beam between two telescope apertures is calculated numerically. Far-field wavefront error is estimated with the absolute height of the peak-to-valley phase deviation between the distorted Gaussian beam and a reference distortion-free Gaussian beam. The results show that the pointing jitter is strongly related to the wavefront error. Furthermore, when the jitter decreases 10 times from 100 nrad to 10 nrad, the wavefront error reduces for more than an order of magnitude. In the analysis of multi-parameter minimization, the minimum of wavefront error tends to Z[5,3] Zernike in some parameter ranges. Some Zernikes have a strong correlation with the wavefront error of the received beam. When the aperture diameter increases at Z[5,3] Zernike, the wavefront error is not monotonic and has oscillation.Nevertheless, the wavefront error almost remains constant with the arm length increasing from 10-1Mkm to 10~3Mkm.When the arm length decreases for three orders of magnitude from 10-1Mkm to 10-4Mkm, the wavefront error has only an order of magnitude increasing. In the range of 10-4Mkm to 10~3Mkm, the lowest limit of the wavefront error is from 0.5 fm to 0.015 fm at Z[5,3] Zernike and 10 nrad jitter.展开更多
We proposed a modified ratchet model including power-stroke and elastic coupling to study the efficiency of collective non-processive motors such as myosin Ⅱ in muscle. Our theoretical results are in good agreement w...We proposed a modified ratchet model including power-stroke and elastic coupling to study the efficiency of collective non-processive motors such as myosin Ⅱ in muscle. Our theoretical results are in good agreement with the experimental data. Our study not only reveals that the maximum efficiency depends on elasticity and is independent of transition rates but also indicates that the parameters fitted to fast muscle are different from those fitted to a slow one. The latter may imply that the structure of the fast muscle is different from that of the slow one. The main reason that our model succeeds is that velocity in this model is an independent variable.展开更多
We investigate the two-mode quantum Rabi model(QRM)describing the interaction between a two-level atom and a two-mode cavity field.The quantum phase transitions are found when the ratioηof transition frequency of ato...We investigate the two-mode quantum Rabi model(QRM)describing the interaction between a two-level atom and a two-mode cavity field.The quantum phase transitions are found when the ratioηof transition frequency of atom to frequency of cavity field approaches infinity.We apply the Schrieffer–Wolff(SW)transformation to derive the low-energy effective Hamiltonian of the two-mode QRM,thus yielding the critical point and rich phase diagram of quantum phase transitions.The phase diagram consists of four regions:a normal phase,an electric superradiant phase,a magnetic superradiant phase and an electromagnetic superradiant phase.The quantum phase transition between the normal phase and the electric(magnetic)superradiant phase is of second order and associates with the breaking of the discrete Z_(2) symmetry.On the other hand,the phase transition between the electric superradiant phase and the magnetic superradiant phase is of first order and relates to the breaking of the continuous U(1)symmetry.Several important physical quantities,for example the excitation energy and average photon number in the four phases,are derived.We find that the excitation spectra exhibit the Nambu–Goldstone mode.We calculate analytically the higher-order correction and finite-frequency exponents of relevant quantities.To confirm the validity of the low-energy effective Hamiltonians analytically derived by us,the finite-frequency scaling relation of the averaged photon numbers is calculated by numerically diagonalizing the two-mode quantum Rabi Hamiltonian.展开更多
Nanostructures self-assembled by cross-β peptides with ordered structures and advantageous mechanical properties have many potential applications in biomaterials and nanotechnologies. Quantifying the intra-and inter-...Nanostructures self-assembled by cross-β peptides with ordered structures and advantageous mechanical properties have many potential applications in biomaterials and nanotechnologies. Quantifying the intra-and inter-molecular driving forces for peptide self-assembly at the atomistic level is essential for understanding the formation mechanism and nanomechanics of various morphologies of self-assembled peptides. We investigate the thermodynamics of the intra-and inter-sheet structure formations in the self-assembly process of cross-β peptide KⅢIK by means of steered molecular dynamics simulation combined with umbrella sampling. It is found that the mechanical properties of the intra-and inter-sheet structures are highly anisotropic with their intermolecular bond stiffness at the temperature of 300 K being 5.58 N/m and 0.32 N/m, respectively. This mechanical anisotropy comes from the fact that the intra-sheet structure is stabilized by enthalpy but the inter-sheet structure is stabilized by entropy. Moreover, the formation process of KⅢIK intra-sheet structure is cooperatively driven by the van der Waals (VDW) interaction between the hydrophobic side chains and the electrostatic interaction between the hydrophilic backbones, but that of the inter-sheet structure is primarily driven by the VDW interaction between the hydrophobic side chains. Although only peptide KⅢIK is studied, the qualitative conclusions on the formation mechanism should also apply to other cross-β peptides.展开更多
The folding of many small proteins is kinetically a two-state process with one major free-energy barrier to overcome,which can be roughly regarded as the inverse process of unfolding.In this work,we first use a Gaussi...The folding of many small proteins is kinetically a two-state process with one major free-energy barrier to overcome,which can be roughly regarded as the inverse process of unfolding.In this work,we first use a Gaussian network model to predict the folding nucleus corresponding to the major free-energy barrier of protein 2 GB1,and find that the folding nucleus is located in theβ-sheet domain.High-temperature molecular dynamics simulations are then used to investigate the unfolding process of 2 GB1.We draw free-energy surface from unfolding simulations,taking RMSD and contact number as reaction coordinates,which confirms that the folding of 2 GB1 is kinetically a two-state process.The comparison of the contact maps before and after the free energy barrier indicates that the transition from native to non-native structure of the protein is kinetically caused by the destruction of theβ-sheet domain,which manifests that the folding nucleus is indeed located in theβ-sheet domain.Moreover,the constrained MD simulation further confirms that the destruction of the secondary structures does not alter the topology of the protein retained by the folding nucleus.These results provide vital information for upcoming researchers to further understand protein folding in similar systems.展开更多
Various soft materials share some common features, such as significant entropic effect, large fluctuations, sensitivity to thermodynamic conditions, and mesoscopic characteristic spatial and temporal scales. However, ...Various soft materials share some common features, such as significant entropic effect, large fluctuations, sensitivity to thermodynamic conditions, and mesoscopic characteristic spatial and temporal scales. However, no quantitative defini- tions have yet been provided for soft matter, and the intrinsic mechanisms leading to their common features are unclear. In this work, from the viewpoint of statistical mechanics, we show that soft matter works in the vicinity of a specific thermo- dynamic state named moderate point, at which entropy and enthalpy contributions among substates along a certain order parameter are well balanced or have a minimal difference. Around the moderate point, the order parameter fluctuation, the associated response function, and the spatial correlation length maximize, which explains the large fluctuation, the sensitivity to thermodynamic conditions, and mesoscopic spatial and temporal scales of soft matter, respectively. Possible applications to switching chemical bonds or allosteric biomachines determining their best working temperatures are also briefly discussed.展开更多
We study the behaviors of mean end-to-end distance and specific heat of a two-dimensional intrinsically curved semiflexible biopolymer with a hard-core excluded volume interaction. We find the mean square end-to-end d...We study the behaviors of mean end-to-end distance and specific heat of a two-dimensional intrinsically curved semiflexible biopolymer with a hard-core excluded volume interaction. We find the mean square end-to-end distance R2 N∝ Nβ at large N, with N being the number of monomers. Bothβ and proportional constant are dependent on the reduced bending rigidity κ and intrinsic curvature c. The larger the c, the smaller the proportional constant, and 1.5 ≥β ≥ 1. Up to a moderate κ = κc, or down to a moderate temperature T = Tc, β = 1.5, the same as that of a self-avoiding random walk, and the larger the intrinsic curvature, the smaller the κc. However, at a large κ or a low temperature,β is close to 1, and the conformation of the biopolymer can be more compact than that of a random walk. There is an intermediate regime with 1.5 〉β 〉 1 and the transition fromβ = 1.5 toβ= 1 is smooth. The specific heat of the system increases smoothly with increasing κ or there is no peak in the specific heat. Therefore, a nonvanishing intrinsic curvature seriously affects the thermal properties of a semiflexible biopolymer, but there is no phase transition in the system.展开更多
Recent experiments have found that in contrast to the nonsuperconducting bulk RNiO_(2)(R=Nd,La,and Pr),the strontium-doped R_(1−x)Sr_(x)NiO_(2)thin films show superconductivity with the critical temperature T_(c)of 9...Recent experiments have found that in contrast to the nonsuperconducting bulk RNiO_(2)(R=Nd,La,and Pr),the strontium-doped R_(1−x)Sr_(x)NiO_(2)thin films show superconductivity with the critical temperature T_(c)of 9–15K at x=0.2,whose origin of superconductivity deserves further investigation.Based on first-principles calculations,we study the electronic structure,lattice dynamics,and electron–phonon coupling(EPC)of the undoped and doped RNiO_(2)(R=Nd,La,and Pr)at the experimental doping level.Our results show that the EPC-derived T_(c)’s are all about 0K in the undoped and doped RNiO_(2).The electron–phonon coupling strength is too small to account for the observed superconductivity.We hence propose that the electron–phonon interaction can not be the exclusive origin of the superconductivity in RNiO_(2)(R=Nd,La,and Pr).展开更多
We develop a minimal phenomenological model to describe the auxetic response recently observed in liquid crystal elastomers, and further determine by theoretical calculation the critical condition required for the aux...We develop a minimal phenomenological model to describe the auxetic response recently observed in liquid crystal elastomers, and further determine by theoretical calculation the critical condition required for the auxetic response to occur.展开更多
Proton-andα-decay spectroscopy can provide valuable information on the nuclear structure and masses of neutron-de cient isotopes.In 1994,the proton drip line of Ac was reached by the detection of^(207)Ac which was id...Proton-andα-decay spectroscopy can provide valuable information on the nuclear structure and masses of neutron-de cient isotopes.In 1994,the proton drip line of Ac was reached by the detection of^(207)Ac which was identified via the-decay spectroscopy.Four years later,the neighboring proton-unbound nucleus ^(206)Ac was discov-ered.展开更多
Besides our previous experimental discovery (Zhao Y R, et al. 2015 Langmuir, 31, 12975) that acetonitrile (ACN) can tune the morphological features of nanostructures self-assembled by short peptides KIIIIK (KI4K...Besides our previous experimental discovery (Zhao Y R, et al. 2015 Langmuir, 31, 12975) that acetonitrile (ACN) can tune the morphological features of nanostructures self-assembled by short peptides KIIIIK (KI4K) in aqueous solution, further experiments reported in this work demonstrate that ACN can also tune the mass of the self-assembled nanostructures. To understand the microscopic mechanism how ACN molecules interfere peptide self-assembly process, we conducted a series of molecular dynamics simulations on a monomer, a cross-β sheet structure, and a proto-fibril of KI4K in pure water, pure ACN, and ACN-water mixtures, respectively. The simulation results indicate that ACN enhances the intra-sheet interaction dominated by the hydrogen bonding (H-bonding) interactions between peptide backbones, but weakens the inter-sheet interaction dominated by the interactions between hydrophobic side chains. Through analyzing the correlations between different groups of solvent and peptides and the solvent behaviors around the proto-fibril, we have found that both the polar and nonpolar groups of ACN play significant roles in causing the opposite effects on intermolecular interactions among peptides. The weaker correlation of the polar group of ACN than water molecule with the peptide backbone enhances H-bonding interactions between peptides in the proto-fibril. The stronger correlation of the nonpolar group of ACN than water molecule with the peptide side chain leads to the accumulation of ACN molecules around the proto-fibril with their hydrophilic groups exposed to water, which in turn allows more water molecules close to the proto-fibril surface and weakens the inter-sheet interactions. The two opposite effects caused by ACN form a microscopic mechanism clearly explaining our experimental observations.展开更多
We develop a Python tool to estimate the tail distribution of the number of dark matter halos beyond a mass threshold and in a given volume in a light-cone.The code is based on the extended Press-Schechter model and i...We develop a Python tool to estimate the tail distribution of the number of dark matter halos beyond a mass threshold and in a given volume in a light-cone.The code is based on the extended Press-Schechter model and is computationally efficient,typically taking a few seconds on a personal laptop for a given set of cosmological parameters.The high efficiency of the code allows a quick estimation of the tension between cosmological models and the red candidate massive galaxies released by the James Webb Space Telescope,as well as scanning the theory space with the Markov Chain Monte Carlo method.As an example application,we use the tool to study the cosmological implication of the candidate galaxies presented in Labbéet al.The standard Λcold dark matter(ΛCDM)model is well consistent with the data if the star formation efficiency can reach~0.3 at high redshift.For a low star formation efficiency ε~0.1,theΛCDM model is disfavored at~2σ-3σconfidence level.展开更多
We numerically investigate the ground-state properties of a trapped Bose–Einstein condensate with quadrupole–quadrupole interaction.We quantitatively characterize the deformations of the condensate induced by the qu...We numerically investigate the ground-state properties of a trapped Bose–Einstein condensate with quadrupole–quadrupole interaction.We quantitatively characterize the deformations of the condensate induced by the quadrupolar interaction.We also map out the stability diagram of the condensates and explore the trap geometry dependence of the stability.展开更多
The environment, such as an accretion disk, could modify the signal of the gravitational wave from astrophysical black hole binaries. In this article, we model the matter field around intermediatemass binary black hol...The environment, such as an accretion disk, could modify the signal of the gravitational wave from astrophysical black hole binaries. In this article, we model the matter field around intermediatemass binary black holes by means of an axion-like scalar field and investigate their joint evolution. In detail, we consider equal mass binary black holes surrounded by a shell of axion-like scalar field both in spherically symmetric and non-spherically symmetric cases, and with different strengths of the scalar field. Our result shows that the environmental scalar field could essentially modify the dynamics. Firstly,in the spherically symmetric case, with increase of the scalar field strength, the number of circular orbits for the binary black hole is reduced. This means that the scalar field could significantly accelerate the merger process. Secondly, once the scalar field strength exceeds a certain critical value, the scalar field could collapse into a third black hole with its mass being larger than that of the binary. Consequently,the new black hole that collapses from the environmental scalar field could accrete the binary promptly and the binary collides head-on with each other. In this process, there is almost no quadrupole signal produced, and, consequently, the gravitational wave is greatly suppressed. Thirdly, when the scalar field strength is relatively smaller than the critical value, the black hole orbit could develop eccentricity through accretion of the scalar field. Fourthly, during the initial stage of the inspiral, the gravitational attractive force from the axion-like scalar field could induce a sudden turn in the binary orbits, hence resulting in a transient wiggle in the gravitational waveform. Finally, in the non-spherical case, the scalar field could gravitationally attract the binary moving toward the center of mass for the scalar field and slow down the merger process.展开更多
The generalized master equation for the space-time coupled continuous time random walk is derived analytically, in which the space-time coupling is considered through the correlated function 9(t) ~ t^γ, 0 ≤ γ 〈...The generalized master equation for the space-time coupled continuous time random walk is derived analytically, in which the space-time coupling is considered through the correlated function 9(t) ~ t^γ, 0 ≤ γ 〈 2, and the probability density function ω(t) of a particle's waiting time t follows a power law form for large t: ω(t) ~t^-(1+α), 0 〈 α 〈 1. The results indicate that the expressions of the generalized master equation are determined by the correlation exponent 7 and the long-tailed index α of the waiting time. Moreover, the diffusion results obtained from the generalized master equation are in accordance with the previous known results and the numerical simulation results.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant Nos.12047503 and 12105343)。
文摘We develop universal quantum computing models that form a family of quantum von Neumann architectures,with modular units of memory,control,CPU,and internet,besides input and output.This family contains three generations characterized by dynamical quantum resource theory,and it also circumvents no-go theorems on quantum programming and control.Besides universality,such a family satisfies other desirable engineering requirements on system and algorithm design,such as modularity and programmability,hence serves as a unique approach to building universal quantum computers.
基金supported in part by the National Natural Science Foundation of China(Grant Nos.12070131001,12125507,11835015,and 12047503)the Deutsche Forschungsgemeinschaft(DFG)through the funds provided to the Sino-German Collaborative Research Center TRR110“Symmetries and the Emergence of Structure in QCD”(Project-ID 196253076)+4 种基金the Chinese Academy of Sciences(CAS)(Grant Nos.YSBR-101 and XDB34030000)the EU STRONG-2020 project under the program H2020-INFRAIA-2018-1(Grant No.824093)the Generalitat valenciana(GVA)for the project with ref.CIDEGENT/2019/015supported by the Slovenian Research Agency(research core Funding No.P1-0035)by CAS President’s International Fellowship Initiative(PIFI)(Grant No.2024PVA0004)。
文摘In 2021,the Belle collaboration reported the first observation of a new structure in theψ(2S)γfinal state produced in the two-photon fusion process.In the hadronic molecule picture,this new structure can be associatedwith the shallow isoscalar D*D* bound state and as such is an excellent candidate for the spin-2 partner of the X(3872)with the quantum numbers J^(PC)=2^(++)conventionally named X_(2).
基金partly supported by the National Key R&D Program of China(Grant No.2023YFA1606700)partly supported by the National Key R&D Program of China(Grant No.2024YFE0105200)+6 种基金supported by the Natural Science Foundation of Henan(Grant Nos.232300421140 and 222300420554)the National Natural Science Foundation of China(Grant Nos.12475086,12192263,12205075,12175239,12221005,12075288,and 12361141819)the Open Project of Guangxi Key Laboratory of Nuclear Physics and Nuclear Technology(Grant No.NLK2021-08)the Central Government Guidance Funds for Local Scientific and Technological Development,China(Grant No.ZY22096024)the National Key Research and Development Program of China(Grant No.2020YFA0406400)the Chinese Academy of Sciences(Grant No.YSBR-101)the Youth Innovation Promotion Association of CAS。
文摘Strong empirical and phenomenological indications exist for large sea-quark admixtures in the low-lying excited baryons.Investigating the low-lying excited baryon ∑^(*)(1/2^(-))is important for determining the nature of the low-lying excited baryons.We review the experimental and theoretical progress on the studies of the ∑^(*)(1/2^(-)).
基金Project supported by the National Key R&D Program of China(Grant Nos.2018YFA0306504 and 2018YFA0306503)the Key-Area Research and Development Program of Guang Dong Province,China(Grant No.2019B030330001)+1 种基金the National Natural Science Foundation of China(Grant Nos.91636213,11654001,91736311,91836302,and U1930201)support from Beijing Academy of Quantum Information Sciences(BAQIS)Research Program(Grant No.Y18G24)。
文摘Quantum information processing based on Rydberg atoms emerged as a promising direction two decades ago.Recent experimental and theoretical progresses have shined exciting light on this avenue.In this concise review,we will briefly introduce the basics of Rydberg atoms and their recent applications in associated areas of neutral atom quantum computation and simulation.We shall also include related discussions on quantum optics with Rydberg atomic ensembles,which are increasingly used to explore quantum computation and quantum simulation with photons.
基金Supported by the National Natural Science Foundation of China(Grant Nos.11974036 and 11834014)。
文摘To understand the intriguing many-body states and effects in the correlated quantum materials,inference of the microscopic effective Hamiltonian from experiments constitutes an important yet very challenging inverse problem.Here we propose an unbiased and efficient approach learning the effective Hamiltonian through the many-body analysis of the measured thermal data.Our approach combines the strategies including the automatic gradient and Bayesian optimization with the thermodynamics many-body solvers including the exact diagonalization and the tensor renormalization group methods.We showcase the accuracy and powerfulness of the Hamiltonian learning by applying it firstly to the thermal data generated from a given spin model,and then to realistic experimental data measured in the spin-chain compound copper nitrate and triangular-lattice magnet TmMgGaO_(4).The present automatic approach constitutes a unified framework of many-body thermal data analysis in the studies of quantum magnets and strongly correlated materials in general.
基金supported in part by the National Key Research and Development Program of China (Grant No. 2020YFC2201501)the National Natural Science Foundation of China (Grant No. 12147103, special fund to the center for quanta-to-cosmos theoretical physics) (Grant No. 11821505)+1 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB23030100)the Chinese Academy of Sciences (CAS)。
文摘In space-based gravitational wave detection, the estimation of far-field wavefront error of the distorted beam is the precondition for the noise reduction. Zernike polynomials are used to describe the wavefront error of the transmitted distorted beam. The propagation of a laser beam between two telescope apertures is calculated numerically. Far-field wavefront error is estimated with the absolute height of the peak-to-valley phase deviation between the distorted Gaussian beam and a reference distortion-free Gaussian beam. The results show that the pointing jitter is strongly related to the wavefront error. Furthermore, when the jitter decreases 10 times from 100 nrad to 10 nrad, the wavefront error reduces for more than an order of magnitude. In the analysis of multi-parameter minimization, the minimum of wavefront error tends to Z[5,3] Zernike in some parameter ranges. Some Zernikes have a strong correlation with the wavefront error of the received beam. When the aperture diameter increases at Z[5,3] Zernike, the wavefront error is not monotonic and has oscillation.Nevertheless, the wavefront error almost remains constant with the arm length increasing from 10-1Mkm to 10~3Mkm.When the arm length decreases for three orders of magnitude from 10-1Mkm to 10-4Mkm, the wavefront error has only an order of magnitude increasing. In the range of 10-4Mkm to 10~3Mkm, the lowest limit of the wavefront error is from 0.5 fm to 0.015 fm at Z[5,3] Zernike and 10 nrad jitter.
基金Project supported by the Key Research Program of Frontier Sciences of Chinese Academy of Sciences(Grant No.Y7Y1472Y61)the National Natural Science Foundation of China(Grant Nos.11205123,11574329,11774358,11747601,and 11675017)+3 种基金the Joint NSFC–ISF Research Program(Grant No.51561145002)the CAS Biophysics Interdisciplinary Innovation Team Project(Grant No.2060299)the CAS Strategic Priority Research Program(Grant No.XDA17010504)the Fundamental Research Funds for the Central Universities(Grant No.2017EYT24)
文摘We proposed a modified ratchet model including power-stroke and elastic coupling to study the efficiency of collective non-processive motors such as myosin Ⅱ in muscle. Our theoretical results are in good agreement with the experimental data. Our study not only reveals that the maximum efficiency depends on elasticity and is independent of transition rates but also indicates that the parameters fitted to fast muscle are different from those fitted to a slow one. The latter may imply that the structure of the fast muscle is different from that of the slow one. The main reason that our model succeeds is that velocity in this model is an independent variable.
基金supported by the National Natural Science Foundation of China(Grant No.12135003)。
文摘We investigate the two-mode quantum Rabi model(QRM)describing the interaction between a two-level atom and a two-mode cavity field.The quantum phase transitions are found when the ratioηof transition frequency of atom to frequency of cavity field approaches infinity.We apply the Schrieffer–Wolff(SW)transformation to derive the low-energy effective Hamiltonian of the two-mode QRM,thus yielding the critical point and rich phase diagram of quantum phase transitions.The phase diagram consists of four regions:a normal phase,an electric superradiant phase,a magnetic superradiant phase and an electromagnetic superradiant phase.The quantum phase transition between the normal phase and the electric(magnetic)superradiant phase is of second order and associates with the breaking of the discrete Z_(2) symmetry.On the other hand,the phase transition between the electric superradiant phase and the magnetic superradiant phase is of first order and relates to the breaking of the continuous U(1)symmetry.Several important physical quantities,for example the excitation energy and average photon number in the four phases,are derived.We find that the excitation spectra exhibit the Nambu–Goldstone mode.We calculate analytically the higher-order correction and finite-frequency exponents of relevant quantities.To confirm the validity of the low-energy effective Hamiltonians analytically derived by us,the finite-frequency scaling relation of the averaged photon numbers is calculated by numerically diagonalizing the two-mode quantum Rabi Hamiltonian.
基金Project supported by the National Basic Research Program of China(Grant No.2013CB932804)the National Natural Science Foundation of China(Grant Nos.11421063,11647601,11504431,and 21503275)+1 种基金the Scientific Research Foundation of China University of Petroleum(East China)for Young Scholar(Grant Y1304073)financial support through the CAS Biophysics Interdisciplinary Innovation Team Project(Grant No.2060299)
文摘Nanostructures self-assembled by cross-β peptides with ordered structures and advantageous mechanical properties have many potential applications in biomaterials and nanotechnologies. Quantifying the intra-and inter-molecular driving forces for peptide self-assembly at the atomistic level is essential for understanding the formation mechanism and nanomechanics of various morphologies of self-assembled peptides. We investigate the thermodynamics of the intra-and inter-sheet structure formations in the self-assembly process of cross-β peptide KⅢIK by means of steered molecular dynamics simulation combined with umbrella sampling. It is found that the mechanical properties of the intra-and inter-sheet structures are highly anisotropic with their intermolecular bond stiffness at the temperature of 300 K being 5.58 N/m and 0.32 N/m, respectively. This mechanical anisotropy comes from the fact that the intra-sheet structure is stabilized by enthalpy but the inter-sheet structure is stabilized by entropy. Moreover, the formation process of KⅢIK intra-sheet structure is cooperatively driven by the van der Waals (VDW) interaction between the hydrophobic side chains and the electrostatic interaction between the hydrophilic backbones, but that of the inter-sheet structure is primarily driven by the VDW interaction between the hydrophobic side chains. Although only peptide KⅢIK is studied, the qualitative conclusions on the formation mechanism should also apply to other cross-β peptides.
基金Project supported by the Strategic Priority Research Program of Chinese Academy of Sciences(Grant No.XDA17010504)the National Natural Science Foundation of China(Grant No.11947302)。
文摘The folding of many small proteins is kinetically a two-state process with one major free-energy barrier to overcome,which can be roughly regarded as the inverse process of unfolding.In this work,we first use a Gaussian network model to predict the folding nucleus corresponding to the major free-energy barrier of protein 2 GB1,and find that the folding nucleus is located in theβ-sheet domain.High-temperature molecular dynamics simulations are then used to investigate the unfolding process of 2 GB1.We draw free-energy surface from unfolding simulations,taking RMSD and contact number as reaction coordinates,which confirms that the folding of 2 GB1 is kinetically a two-state process.The comparison of the contact maps before and after the free energy barrier indicates that the transition from native to non-native structure of the protein is kinetically caused by the destruction of theβ-sheet domain,which manifests that the folding nucleus is indeed located in theβ-sheet domain.Moreover,the constrained MD simulation further confirms that the destruction of the secondary structures does not alter the topology of the protein retained by the folding nucleus.These results provide vital information for upcoming researchers to further understand protein folding in similar systems.
基金Project supported by the National Basic Research Program of China(Grant No.2013CB932804)the National Natural Science Foundation of China(Grant Nos.11274319 and 11421063)
文摘Various soft materials share some common features, such as significant entropic effect, large fluctuations, sensitivity to thermodynamic conditions, and mesoscopic characteristic spatial and temporal scales. However, no quantitative defini- tions have yet been provided for soft matter, and the intrinsic mechanisms leading to their common features are unclear. In this work, from the viewpoint of statistical mechanics, we show that soft matter works in the vicinity of a specific thermo- dynamic state named moderate point, at which entropy and enthalpy contributions among substates along a certain order parameter are well balanced or have a minimal difference. Around the moderate point, the order parameter fluctuation, the associated response function, and the spatial correlation length maximize, which explains the large fluctuation, the sensitivity to thermodynamic conditions, and mesoscopic spatial and temporal scales of soft matter, respectively. Possible applications to switching chemical bonds or allosteric biomachines determining their best working temperatures are also briefly discussed.
基金Project supported by the Minister of Science and Technology of China
文摘We study the behaviors of mean end-to-end distance and specific heat of a two-dimensional intrinsically curved semiflexible biopolymer with a hard-core excluded volume interaction. We find the mean square end-to-end distance R2 N∝ Nβ at large N, with N being the number of monomers. Bothβ and proportional constant are dependent on the reduced bending rigidity κ and intrinsic curvature c. The larger the c, the smaller the proportional constant, and 1.5 ≥β ≥ 1. Up to a moderate κ = κc, or down to a moderate temperature T = Tc, β = 1.5, the same as that of a self-avoiding random walk, and the larger the intrinsic curvature, the smaller the κc. However, at a large κ or a low temperature,β is close to 1, and the conformation of the biopolymer can be more compact than that of a random walk. There is an intermediate regime with 1.5 〉β 〉 1 and the transition fromβ = 1.5 toβ= 1 is smooth. The specific heat of the system increases smoothly with increasing κ or there is no peak in the specific heat. Therefore, a nonvanishing intrinsic curvature seriously affects the thermal properties of a semiflexible biopolymer, but there is no phase transition in the system.
基金supported by the National Natural Science Foundation of China (Grant Nos. 12074031, 11674025, and 12174443)the National Key R&D Program of China (Grant No. 2017YFA0302903)the Beijing Natural Science Foundation (Grant No. Z200005)
文摘Recent experiments have found that in contrast to the nonsuperconducting bulk RNiO_(2)(R=Nd,La,and Pr),the strontium-doped R_(1−x)Sr_(x)NiO_(2)thin films show superconductivity with the critical temperature T_(c)of 9–15K at x=0.2,whose origin of superconductivity deserves further investigation.Based on first-principles calculations,we study the electronic structure,lattice dynamics,and electron–phonon coupling(EPC)of the undoped and doped RNiO_(2)(R=Nd,La,and Pr)at the experimental doping level.Our results show that the EPC-derived T_(c)’s are all about 0K in the undoped and doped RNiO_(2).The electron–phonon coupling strength is too small to account for the observed superconductivity.We hence propose that the electron–phonon interaction can not be the exclusive origin of the superconductivity in RNiO_(2)(R=Nd,La,and Pr).
基金Project supported by the National Natural Science Foundation of China (Grant No. 22193032)。
文摘We develop a minimal phenomenological model to describe the auxetic response recently observed in liquid crystal elastomers, and further determine by theoretical calculation the critical condition required for the auxetic response to occur.
基金Strategic Priority Research Program of Chinese Academy of Sciences(XDB34010000)Guangdong Major Project of Basic and Applied Basic Research(2021B0301030006)+4 种基金National Key R&D Program of China(2018YFA0404402)National Natural Science Foundation of China(U1932139,12105328,12035011,U2032135,11975279)Youth Innovation Promotion Association CAS(2020409)CAS Project for Young Scientists in Basic Research(YSBR-002)Special Research Assistant Project of Chinese Academy of Sciences。
文摘Proton-andα-decay spectroscopy can provide valuable information on the nuclear structure and masses of neutron-de cient isotopes.In 1994,the proton drip line of Ac was reached by the detection of^(207)Ac which was identified via the-decay spectroscopy.Four years later,the neighboring proton-unbound nucleus ^(206)Ac was discov-ered.
基金Project supported by the National Basic Research Program of China(Grant No.2013CB932804)the National Natural Science Foundation of China(Grant Nos.91227115,11421063,11504431,and 21503275)+1 种基金the Fundamental Research Funds for Central Universities of China(Grant No.15CX02025A)the Application Research Foundation for Post-doctoral Scientists of Qingdao City,China(Grant No.T1404096)
文摘Besides our previous experimental discovery (Zhao Y R, et al. 2015 Langmuir, 31, 12975) that acetonitrile (ACN) can tune the morphological features of nanostructures self-assembled by short peptides KIIIIK (KI4K) in aqueous solution, further experiments reported in this work demonstrate that ACN can also tune the mass of the self-assembled nanostructures. To understand the microscopic mechanism how ACN molecules interfere peptide self-assembly process, we conducted a series of molecular dynamics simulations on a monomer, a cross-β sheet structure, and a proto-fibril of KI4K in pure water, pure ACN, and ACN-water mixtures, respectively. The simulation results indicate that ACN enhances the intra-sheet interaction dominated by the hydrogen bonding (H-bonding) interactions between peptide backbones, but weakens the inter-sheet interaction dominated by the interactions between hydrophobic side chains. Through analyzing the correlations between different groups of solvent and peptides and the solvent behaviors around the proto-fibril, we have found that both the polar and nonpolar groups of ACN play significant roles in causing the opposite effects on intermolecular interactions among peptides. The weaker correlation of the polar group of ACN than water molecule with the peptide backbone enhances H-bonding interactions between peptides in the proto-fibril. The stronger correlation of the nonpolar group of ACN than water molecule with the peptide side chain leads to the accumulation of ACN molecules around the proto-fibril with their hydrophilic groups exposed to water, which in turn allows more water molecules close to the proto-fibril surface and weakens the inter-sheet interactions. The two opposite effects caused by ACN form a microscopic mechanism clearly explaining our experimental observations.
基金supported by the National Key R&D Program of China(grant No.2020YFC2201600)the National Natural Science Foundation of China(NSFC,grant No.12073088)the National SKA Program of China(grant No.2020SKA0110402)。
文摘We develop a Python tool to estimate the tail distribution of the number of dark matter halos beyond a mass threshold and in a given volume in a light-cone.The code is based on the extended Press-Schechter model and is computationally efficient,typically taking a few seconds on a personal laptop for a given set of cosmological parameters.The high efficiency of the code allows a quick estimation of the tension between cosmological models and the red candidate massive galaxies released by the James Webb Space Telescope,as well as scanning the theory space with the Markov Chain Monte Carlo method.As an example application,we use the tool to study the cosmological implication of the candidate galaxies presented in Labbéet al.The standard Λcold dark matter(ΛCDM)model is well consistent with the data if the star formation efficiency can reach~0.3 at high redshift.For a low star formation efficiency ε~0.1,theΛCDM model is disfavored at~2σ-3σconfidence level.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11434011,11674334,and 11747601)the Key Research Program of the Chinese Academy of Sciences(Grant No.XDPB08-1)
文摘We numerically investigate the ground-state properties of a trapped Bose–Einstein condensate with quadrupole–quadrupole interaction.We quantitatively characterize the deformations of the condensate induced by the quadrupolar interaction.We also map out the stability diagram of the condensates and explore the trap geometry dependence of the stability.
基金supported by Beijing Normal University (Grant No. 312232102)partially supported by the Chinese National Youth Thousand Talents Program+3 种基金the Fundamental Research Funds for the Central Universities (Grant No. 310421107)supported in part by the National Natural Science Foundation of China (Grant Nos. 11690022, 11375247, 11435006 and 11647601)by the Strategic Priority Research Program of CAS (Grant No. XDB23030100)by the Key Research Program of Frontier Sciences of CAS
文摘The environment, such as an accretion disk, could modify the signal of the gravitational wave from astrophysical black hole binaries. In this article, we model the matter field around intermediatemass binary black holes by means of an axion-like scalar field and investigate their joint evolution. In detail, we consider equal mass binary black holes surrounded by a shell of axion-like scalar field both in spherically symmetric and non-spherically symmetric cases, and with different strengths of the scalar field. Our result shows that the environmental scalar field could essentially modify the dynamics. Firstly,in the spherically symmetric case, with increase of the scalar field strength, the number of circular orbits for the binary black hole is reduced. This means that the scalar field could significantly accelerate the merger process. Secondly, once the scalar field strength exceeds a certain critical value, the scalar field could collapse into a third black hole with its mass being larger than that of the binary. Consequently,the new black hole that collapses from the environmental scalar field could accrete the binary promptly and the binary collides head-on with each other. In this process, there is almost no quadrupole signal produced, and, consequently, the gravitational wave is greatly suppressed. Thirdly, when the scalar field strength is relatively smaller than the critical value, the black hole orbit could develop eccentricity through accretion of the scalar field. Fourthly, during the initial stage of the inspiral, the gravitational attractive force from the axion-like scalar field could induce a sudden turn in the binary orbits, hence resulting in a transient wiggle in the gravitational waveform. Finally, in the non-spherical case, the scalar field could gravitationally attract the binary moving toward the center of mass for the scalar field and slow down the merger process.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11605003 and 11547231
文摘The generalized master equation for the space-time coupled continuous time random walk is derived analytically, in which the space-time coupling is considered through the correlated function 9(t) ~ t^γ, 0 ≤ γ 〈 2, and the probability density function ω(t) of a particle's waiting time t follows a power law form for large t: ω(t) ~t^-(1+α), 0 〈 α 〈 1. The results indicate that the expressions of the generalized master equation are determined by the correlation exponent 7 and the long-tailed index α of the waiting time. Moreover, the diffusion results obtained from the generalized master equation are in accordance with the previous known results and the numerical simulation results.