The double perovskite oxides Sr2Mg1-xF exMoO6-δ were investigated as catalysts for the methane oxidation.The structural properties of catalysts were characterized in detail by X-ray diffraction,X-ray photoelectron sp...The double perovskite oxides Sr2Mg1-xF exMoO6-δ were investigated as catalysts for the methane oxidation.The structural properties of catalysts were characterized in detail by X-ray diffraction,X-ray photoelectron spectroscopy and X-ray absorption spectroscopy.The catalytic property was strongly influenced by the Fe substitution.The relation between catalytic performance and the degree of Fe substitution was examined with regard to the structure and surface characteristics of the mixed oxides.The Fe-containing catalysts exhibited higher activity attributable to the possible(Fe2+,Mo6+) and (Fe3+,Mo5+)valency pairs,and the highest activity was observed for Sr2Mg0.2Fe0.8MoO6-δ.The enhancement of the catalytic activity may be correlated with the Fe-relating surface lattice oxygen species and was discussed in view of the presence of oxygen vacancies.展开更多
A nano-Li3V2(PO4)3/C powder was successfully prepared by a thermal polymerization method. The particle sizes of the intermediate product powder and the final product Li3V2(PO4)3 are all less than 200 nm. The carbo...A nano-Li3V2(PO4)3/C powder was successfully prepared by a thermal polymerization method. The particle sizes of the intermediate product powder and the final product Li3V2(PO4)3 are all less than 200 nm. The carbon is partially coated on the surface of Li3V2(PO4)3 particles and the rest exists between particles with a total carbon content of 4.6wt%. This nano-Li3V2(PO4)3/C sample shows a discharge capacity of 124 mAh/g with-out capacity fading after 100 cycles at 0.1 C in the voltage rang of 3.0-4.3 V. Excellent rate performance is also achieved with a capacity of 80 mAh/g at 20 C in 3.0-4.3 V and 100 mAh/g at 10 C in 3.0-4.8 V. This study suggests that the thermal polymerization method is suitable to synthesize nano-Li3V2(PO4)3/C materials.展开更多
A series of Mn-doped K-Co-Mo catalysts were prepared by a sol-gel method. The catalyst structure was well characterized by X-ray diffraction, N2 physisorption, NH3 temperature- programmed adsorption, in situ diffuse r...A series of Mn-doped K-Co-Mo catalysts were prepared by a sol-gel method. The catalyst structure was well characterized by X-ray diffraction, N2 physisorption, NH3 temperature- programmed adsorption, in situ diffuse reflectance infrared Fourier transform spectroscopy, and X-ray absorption fine structure spectroscopy. The catalytic performance for higher alcohol synthesis from syngas was measured. It was found that the Mn-doped catalysts ex- hibited a much higher activity as compared to the unpromoted catalyst, and in particular the C2+ alcohol selectivity increased significantly. The distribution of alcohol products de- viated from the Anderson-Schulz-Flory law. The portion of methanol in total alcohol was suppressed remarkably and the ethanol became the predominant product. Characterization results indicated that the incorporation of Mn enhanced the interaction of Co and Mo and thus led to the formation of Co-Mo-O species, which was regarded as the active site for the alcohol synthesis. Secondly, the presence of Mn reduced the amount of strong acid sites significantly and meanwhile promoted the formation of weak acid sites, which had a positive effect on the synthesis of alcohol. Furthermore, it was found that the incorporation of Mn can enhance the adsorption of linear- and bridge-type CO significantly, which contributed to the formation of alcohol and growth of carbon chain and thus increased the selectivity to C2+OH.展开更多
基金the financial supports from the National Natural Science Foundation of China(No.20703042)National Basic Research Program of China(No.2010CB923300)+1 种基金USTC-NSRL Association Funding(No.KY2060030009)the Fundamental Research Funds for the Central Universities
文摘The double perovskite oxides Sr2Mg1-xF exMoO6-δ were investigated as catalysts for the methane oxidation.The structural properties of catalysts were characterized in detail by X-ray diffraction,X-ray photoelectron spectroscopy and X-ray absorption spectroscopy.The catalytic property was strongly influenced by the Fe substitution.The relation between catalytic performance and the degree of Fe substitution was examined with regard to the structure and surface characteristics of the mixed oxides.The Fe-containing catalysts exhibited higher activity attributable to the possible(Fe2+,Mo6+) and (Fe3+,Mo5+)valency pairs,and the highest activity was observed for Sr2Mg0.2Fe0.8MoO6-δ.The enhancement of the catalytic activity may be correlated with the Fe-relating surface lattice oxygen species and was discussed in view of the presence of oxygen vacancies.
文摘A nano-Li3V2(PO4)3/C powder was successfully prepared by a thermal polymerization method. The particle sizes of the intermediate product powder and the final product Li3V2(PO4)3 are all less than 200 nm. The carbon is partially coated on the surface of Li3V2(PO4)3 particles and the rest exists between particles with a total carbon content of 4.6wt%. This nano-Li3V2(PO4)3/C sample shows a discharge capacity of 124 mAh/g with-out capacity fading after 100 cycles at 0.1 C in the voltage rang of 3.0-4.3 V. Excellent rate performance is also achieved with a capacity of 80 mAh/g at 20 C in 3.0-4.3 V and 100 mAh/g at 10 C in 3.0-4.8 V. This study suggests that the thermal polymerization method is suitable to synthesize nano-Li3V2(PO4)3/C materials.
文摘A series of Mn-doped K-Co-Mo catalysts were prepared by a sol-gel method. The catalyst structure was well characterized by X-ray diffraction, N2 physisorption, NH3 temperature- programmed adsorption, in situ diffuse reflectance infrared Fourier transform spectroscopy, and X-ray absorption fine structure spectroscopy. The catalytic performance for higher alcohol synthesis from syngas was measured. It was found that the Mn-doped catalysts ex- hibited a much higher activity as compared to the unpromoted catalyst, and in particular the C2+ alcohol selectivity increased significantly. The distribution of alcohol products de- viated from the Anderson-Schulz-Flory law. The portion of methanol in total alcohol was suppressed remarkably and the ethanol became the predominant product. Characterization results indicated that the incorporation of Mn enhanced the interaction of Co and Mo and thus led to the formation of Co-Mo-O species, which was regarded as the active site for the alcohol synthesis. Secondly, the presence of Mn reduced the amount of strong acid sites significantly and meanwhile promoted the formation of weak acid sites, which had a positive effect on the synthesis of alcohol. Furthermore, it was found that the incorporation of Mn can enhance the adsorption of linear- and bridge-type CO significantly, which contributed to the formation of alcohol and growth of carbon chain and thus increased the selectivity to C2+OH.