Commercial exploration and development of deep buried coalbed methane (CBM) in Daning-Jixian Block, eastern margin of Ordos Basin, have rapidly increased in recent decades. Gas content, saturation and well productivit...Commercial exploration and development of deep buried coalbed methane (CBM) in Daning-Jixian Block, eastern margin of Ordos Basin, have rapidly increased in recent decades. Gas content, saturation and well productivity show significant heterogeneity in this area. To better understand the geological controlling mechanism on gas distribution heterogeneity, the burial history, hydrocarbon generation history and tectonic evolution history were studied by numerical simulation and experimental simulation, which could provide guidance for further development of CBM in this area. The burial history of coal reservoir can be classified into six stages, i.e., shallowly buried stage, deeply burial stage, uplifting stage, short-term tectonic subsidence stage, large-scale uplifting stage, sustaining uplifting and structural inversion stage. The organic matter in coal reservoir experienced twice hydrocarbon generation. Primary and secondary hydrocarbon generation processes were formed by the Early and Middle Triassic plutonic metamorphism and Early Cretaceous regional magmatic thermal metamorphism, respectively. Five critical tectonic events of the Indosinian, Yanshanian and Himalayan orogenies affect different stages of the CBM reservoir accumulation process. The Indosinian orogeny mainly controls the primary CBM generation. The Yanshanian Orogeny dominates the second gas generation and migration processes. The Himalayan orogeny mainly affects the gas dissipation process and current CBM distribution heterogeneity.展开更多
Pores are the main accumulation sites and migration pathways for coalbed methane(also referred to as CBM).Pore structure restricts the content and recoverability of CBM from coal reservoirs.In this study,12 representa...Pores are the main accumulation sites and migration pathways for coalbed methane(also referred to as CBM).Pore structure restricts the content and recoverability of CBM from coal reservoirs.In this study,12 representative coal samples with different ash yields that have similar tectonic characteristics and burial depths were collected from different mining areas in the Jiergalangtu and Huolinhe depressions in the Erlian Basin.These samples were used to study the restrictions of ash yield on the characteristics of coal pore structures and the recoverability of CBM through macroscopic and microscopic structure observation,scanning electron microscope observations,vitrinite reflectance tests,low-temperature N2 adsorption,nuclear magnetic resonance(NMR),and micro-computed tomography.The results show that coal reservoirs in the study area vary greatly in ash yield,based on which they can be divided into three types,i.e.,low-ash-content,ash-bearing,and high-ash-content coal reservoirs.In addition,the ash yield has a certain impact on the development of coal pores;coal samples with lower ash yields indicate the presence of well-developed medium-large pores and better connectivity.Ash yield also has a certain impact on the brittleness of coal wherein a lower ash yield implies the development of brittle coal that is more liable to fracture as compared to less brittle samples at the same pressure.Absorbed gas content also varies significantly with ash yield;a low ash yield impacts the gas saturation of coal.Overall,for coal reservoirs in the study area,their porosity,pore diameter,movable fluid porosity,adsorbed gas amount,and recoverability decrease as the ash yield increases.展开更多
A desorption simulation experiment with the condition of simulated strata was designed. The experiment, under different depressurizing rates and the same fluid saturation, was conducted on the sample from 3# coal of D...A desorption simulation experiment with the condition of simulated strata was designed. The experiment, under different depressurizing rates and the same fluid saturation, was conducted on the sample from 3# coal of Daning coal mine in Jincheng, Shanxi Province. The gas production rate and pressure change at both ends of the sample were studied systematically, and the mechanisms of some phenomena in the experiment were discussed. The experimental results show that, whether at fast or slow depressurizing rate, the methane adsorbed to high-rank coal can effectively desorb and the desorption efficiency can reach above 90%. There is an obvious inflection point on the gas yield curve during the desorption process and it appears after the pressure on the lump of coal reduces below the desorption pressure. The desorption of methane from high-rank coal is mainly driven by differential pressure, and high pressure difference is conducive to fast desorption. In the scenario of fast depressurization, the desorption inflection appears earlier and the gas production rate in the stage of rapid desorption is higher. It is experimentally concluded that the originally recognized strategy of long-term slow CBM production is doubtful and the economic benefit of CBM exploitation from high-rank coal can be effectively improved by rapid drainage and pressure reduction. The field experiment results in pilot blocks of Fanzhuang and Zhengzhuang show that by increasing the drainage depressurization rate, the peak production of gas well would increase greatly, the time of gas well to reach the economic production shortened, the average time for a gas well to reach expected production reduced by half, and the peak gas production is higher.展开更多
Stress sensitivity has significant negative effects on the permeability and production of coalbed methane(CBM)reservoirs.To effectively minimize these negative effects,the degree of stress sensitivity during the CBM p...Stress sensitivity has significant negative effects on the permeability and production of coalbed methane(CBM)reservoirs.To effectively minimize these negative effects,the degree of stress sensitivity during the CBM production process should be carefully studied.In this work,the curvature of the stress-sensitivity curve was adopted to explore the degree of stress sensitivity,dividing the stress-sensitivity curve and the drainage process into five stress stages:sharp decrease,rapid decrease,low-speed decrease,slower decrease and harmless with four critical stress points—transition,sensitivity,relief and harmless.The actual stages were determined by the initial permeability,stress-sensitivity coefficient and difference between the reservoir pressure and desorption pressure.The four critical stress points did not completely exist in the stress-sensitivity curve.With an increase in the initial permeability of coal,the number of existing critical stresses increases,leading to different gas-water drainage strategies for CBM wells.For reservoirs with a certain stress-sensitivity coefficient,the permeability at the sensitive stress point was successively greater than that at the transition,relief and the harmless stresses.When the stress-sensitivity coefficient is different,the stage is different at the beginning of drainage,and with an increase in the stress-sensitivity coefficient,the decrease rate of the permeability increases.Therefore,the stress-sensitivity coefficient determines the ability to maintain stable CBM production.For well-fractured CBM reservoirs,with a high stress-sensitivity coefficient,permeability damage mainly occurs when the reservoir pressure is less than the relief stress;therefore,the depressurization rate should be slow.For CBM reservoirs with fewer natural fractures,the reverse applies,and the depressurization rate can be much faster.The higher the difference between the reservoir and desorption pressures,the higher the effective stress and permeability damage after desorption,resulting in a much longer drainage time and many difficulties for the desorption of coalbed methane.The findings of this study can help better understand and minimize the negative effects of stress sensitivity during the CBM production process.展开更多
基金This research was funded by the National Natural Science Foundation of China (Grant No. 41902178)National Science and Technology Major Project (Oil & Gas) (No. 2016ZX05065)+1 种基金Natural Science Foundation of Shanxi Province, China (No. 20210302123165)Open Fund of Beijing Key Laboratory of Unconventional Natural Gas Geological Evaluation and Development Engineering, China University of Geosciences (Beijing) (No. 2019BJ02001).
文摘Commercial exploration and development of deep buried coalbed methane (CBM) in Daning-Jixian Block, eastern margin of Ordos Basin, have rapidly increased in recent decades. Gas content, saturation and well productivity show significant heterogeneity in this area. To better understand the geological controlling mechanism on gas distribution heterogeneity, the burial history, hydrocarbon generation history and tectonic evolution history were studied by numerical simulation and experimental simulation, which could provide guidance for further development of CBM in this area. The burial history of coal reservoir can be classified into six stages, i.e., shallowly buried stage, deeply burial stage, uplifting stage, short-term tectonic subsidence stage, large-scale uplifting stage, sustaining uplifting and structural inversion stage. The organic matter in coal reservoir experienced twice hydrocarbon generation. Primary and secondary hydrocarbon generation processes were formed by the Early and Middle Triassic plutonic metamorphism and Early Cretaceous regional magmatic thermal metamorphism, respectively. Five critical tectonic events of the Indosinian, Yanshanian and Himalayan orogenies affect different stages of the CBM reservoir accumulation process. The Indosinian orogeny mainly controls the primary CBM generation. The Yanshanian Orogeny dominates the second gas generation and migration processes. The Himalayan orogeny mainly affects the gas dissipation process and current CBM distribution heterogeneity.
基金This study was financially supported by the National Natural Science Foundation of China(Grant No.42072162)the Natural Science Foundation of Shandong Province(No.ZR2020MD036)a forward-looking and basic technology research project of PetroChina(No.2021DJ2301).
文摘Pores are the main accumulation sites and migration pathways for coalbed methane(also referred to as CBM).Pore structure restricts the content and recoverability of CBM from coal reservoirs.In this study,12 representative coal samples with different ash yields that have similar tectonic characteristics and burial depths were collected from different mining areas in the Jiergalangtu and Huolinhe depressions in the Erlian Basin.These samples were used to study the restrictions of ash yield on the characteristics of coal pore structures and the recoverability of CBM through macroscopic and microscopic structure observation,scanning electron microscope observations,vitrinite reflectance tests,low-temperature N2 adsorption,nuclear magnetic resonance(NMR),and micro-computed tomography.The results show that coal reservoirs in the study area vary greatly in ash yield,based on which they can be divided into three types,i.e.,low-ash-content,ash-bearing,and high-ash-content coal reservoirs.In addition,the ash yield has a certain impact on the development of coal pores;coal samples with lower ash yields indicate the presence of well-developed medium-large pores and better connectivity.Ash yield also has a certain impact on the brittleness of coal wherein a lower ash yield implies the development of brittle coal that is more liable to fracture as compared to less brittle samples at the same pressure.Absorbed gas content also varies significantly with ash yield;a low ash yield impacts the gas saturation of coal.Overall,for coal reservoirs in the study area,their porosity,pore diameter,movable fluid porosity,adsorbed gas amount,and recoverability decrease as the ash yield increases.
基金Supported by the China National Science and Technology Major Project(2017ZX05064)
文摘A desorption simulation experiment with the condition of simulated strata was designed. The experiment, under different depressurizing rates and the same fluid saturation, was conducted on the sample from 3# coal of Daning coal mine in Jincheng, Shanxi Province. The gas production rate and pressure change at both ends of the sample were studied systematically, and the mechanisms of some phenomena in the experiment were discussed. The experimental results show that, whether at fast or slow depressurizing rate, the methane adsorbed to high-rank coal can effectively desorb and the desorption efficiency can reach above 90%. There is an obvious inflection point on the gas yield curve during the desorption process and it appears after the pressure on the lump of coal reduces below the desorption pressure. The desorption of methane from high-rank coal is mainly driven by differential pressure, and high pressure difference is conducive to fast desorption. In the scenario of fast depressurization, the desorption inflection appears earlier and the gas production rate in the stage of rapid desorption is higher. It is experimentally concluded that the originally recognized strategy of long-term slow CBM production is doubtful and the economic benefit of CBM exploitation from high-rank coal can be effectively improved by rapid drainage and pressure reduction. The field experiment results in pilot blocks of Fanzhuang and Zhengzhuang show that by increasing the drainage depressurization rate, the peak production of gas well would increase greatly, the time of gas well to reach the economic production shortened, the average time for a gas well to reach expected production reduced by half, and the peak gas production is higher.
基金This research was supported by National Science and Technology Major Project(No.2017ZX05064)the National Natural Science Foundation of China(Grant Nos.42130806,41830427,and 41922016).
文摘Stress sensitivity has significant negative effects on the permeability and production of coalbed methane(CBM)reservoirs.To effectively minimize these negative effects,the degree of stress sensitivity during the CBM production process should be carefully studied.In this work,the curvature of the stress-sensitivity curve was adopted to explore the degree of stress sensitivity,dividing the stress-sensitivity curve and the drainage process into five stress stages:sharp decrease,rapid decrease,low-speed decrease,slower decrease and harmless with four critical stress points—transition,sensitivity,relief and harmless.The actual stages were determined by the initial permeability,stress-sensitivity coefficient and difference between the reservoir pressure and desorption pressure.The four critical stress points did not completely exist in the stress-sensitivity curve.With an increase in the initial permeability of coal,the number of existing critical stresses increases,leading to different gas-water drainage strategies for CBM wells.For reservoirs with a certain stress-sensitivity coefficient,the permeability at the sensitive stress point was successively greater than that at the transition,relief and the harmless stresses.When the stress-sensitivity coefficient is different,the stage is different at the beginning of drainage,and with an increase in the stress-sensitivity coefficient,the decrease rate of the permeability increases.Therefore,the stress-sensitivity coefficient determines the ability to maintain stable CBM production.For well-fractured CBM reservoirs,with a high stress-sensitivity coefficient,permeability damage mainly occurs when the reservoir pressure is less than the relief stress;therefore,the depressurization rate should be slow.For CBM reservoirs with fewer natural fractures,the reverse applies,and the depressurization rate can be much faster.The higher the difference between the reservoir and desorption pressures,the higher the effective stress and permeability damage after desorption,resulting in a much longer drainage time and many difficulties for the desorption of coalbed methane.The findings of this study can help better understand and minimize the negative effects of stress sensitivity during the CBM production process.