Astrodynamical space test of relativity using optical devices optimized for gravitation wave detection (ASTROD- GW) is an optimization of ASTROD to focus on the goal of detection of gravitation waves. The detection ...Astrodynamical space test of relativity using optical devices optimized for gravitation wave detection (ASTROD- GW) is an optimization of ASTROD to focus on the goal of detection of gravitation waves. The detection sensitivity is shifted 52 times toward larger wavelength compared with that of laser interferometer space antenna (LISA). The mission orbits of the three spacecrafts forming a nearly equilateral triangular array are chosen to be near the Sun–Earth Lagrange points L3, L4, and L5. The three spacecrafts range interferometrically with one another with an arm length of about 260 million kilometers. In order to attain the required sensitivity for ASTROD-GW, laser frequency noise must be suppressed to below the secondary noises such as the optical path noise, acceleration noise, etc. For suppressing laser frequency noise, we need to use time delay interferometry (TDI) to match the two different optical paths (times of travel). Since planets and other solar-system bodies perturb the orbits of ASTROD-GW spacecraft and affect the TDI, we simulate the time delay numerically using CGC 2.7 (here, CGC stands for center for gravitation and cosmology) ephemeris framework. To conform to the ASTROD-GW planning, we work out a set of 20-year optimized mission orbits of ASTROD-GW spacecraft starting at June 21, 2028, and calculate the differences in optical path in the first and second generation TDIs separately for one-detector case. In our optimized mission orbits of 20 years, changes of arm lengths are less than 0.0003 AU; the relative Doppler velocities are all less than 3m/s. All the second generation TDI for one-detector case satisfies the ASTROD-GW requirement.展开更多
ASTROD-GW (ASTROD [astrodynamical space test of relativity using optical devices] optimized for gravitational wave detection) is a gravitational-wave mission with the aim of detecting gravitational waves from massiv...ASTROD-GW (ASTROD [astrodynamical space test of relativity using optical devices] optimized for gravitational wave detection) is a gravitational-wave mission with the aim of detecting gravitational waves from massive black holes, extreme mass ratio inspirais (EMRIs) and galactic compact binaries together with testing relativistic gravity and probing dark energy and cosmology. Mission orbits of the 3 spacecrafts forming a nearly equilateral triangular array are chosen to be near the Sun-Earth Lagrange points L3, L4, and L5. The 3 space, crafts range interferometrically with one another with arm length about 260 million kilometers. For 260 times longer arm length, the detection sensitivity of ASTROD- GW is 260 fold better than that of eLISA/NGO in the lower frequency region by assuming the same acceleration noise. Therefore, ASTROD-GW will be a better cosmological probe. In previous papers, we have worked out the time delay interferometry (TDI) for the ecliptic formation. To resolve the reflection ambiguity about the ecliptic plane in source position determination, we have changed the basic formation into slightly inclined formation with half-year precessionperiod. In this paper, we optimize a set of 10-year inclined ASTROD-GW mission orbits numerically using ephemeris framework starting at June 21, 2035, including cases of inclination angle with 0° (no inclination), 0.5°, 1.0°, 1.5°, 2.0°, 2.5°, and 3.0°. We simulate the time delays of the first and second generation TDI configurations for the different inclinations, and compare/analyse the numerical results to attain the requisite sensitivity of ASTROD-GW by suppressing laser frequency noise below the secondary noises. To explicate our calculation process for different inclination cases, we take the 1.0° as an example to show the orbit optimization and TDI simulation.展开更多
Traditional protocols in wireless sensor networks follow the strict layering techniques which lead to the degradation in performance of the QoS (Quality of Service) parameters. Battery powered tiny sensor nodes with c...Traditional protocols in wireless sensor networks follow the strict layering techniques which lead to the degradation in performance of the QoS (Quality of Service) parameters. Battery powered tiny sensor nodes with constraints of energy and guaranteed time require the efficient communication protocols with innovative and optimized approach to attain the objectives of WSN. Especially, these requirements become more stringent with the emergence of novel applications based on WSN. In order to find an optimized solution to this, cross layer-based approach which allows the cooperation, synchronization and communication among the layers, seems to be appropriate. In this paper, a realistic cross-layer protocol has been developed taking into considerations of MAC and Physical layer to further optimize the QoS parameters of already developed Energy Efficient Inter Cluster Coordination Protocol (EEICCP) at the Network layer level. In this paper we endeavor to concentrate on the enhancement of reliability parameter of QoS and results are validated through simulations done in MATLAB.展开更多
In response to the incidence of cervical intraepithelial neoplasia and cervical cancer in China and global screening strategies,a collaborative effort was undertaken by seven Chinese medical associations to develop th...In response to the incidence of cervical intraepithelial neoplasia and cervical cancer in China and global screening strategies,a collaborative effort was undertaken by seven Chinese medical associations to develop this guideline for cervical cancer screening.The guideline recommends high-risk human papillomavirus(hr-HPV)testing as the preferred method for primary screening,which should have been approved by authoritative institutions and clinically validated for primary screening.In areas without access to HPV testing,cytology can be used as an alternative.However,it is recommended to replace cytology with HPV-based screening as conditions permit.Cotesting(HPV testing in combination with cytology)is recommended for areas with sufficient medical resources,opportunistic screening populations,and partial special populations.The guideline recommends that individuals with a cervix initiate cervical cancer screening at the age 25 years and undergo HPV testing alone or cotesting every five years,or cytology alone every three years.Women over the age of 65 who have had documented adequate negative prior screening in the past may terminate screening.Corresponding screening programs are proposed for different special populations.The development of these guidelines is an important step in the effort to eliminate cervical cancer in China.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 10778710 and 10875171)
文摘Astrodynamical space test of relativity using optical devices optimized for gravitation wave detection (ASTROD- GW) is an optimization of ASTROD to focus on the goal of detection of gravitation waves. The detection sensitivity is shifted 52 times toward larger wavelength compared with that of laser interferometer space antenna (LISA). The mission orbits of the three spacecrafts forming a nearly equilateral triangular array are chosen to be near the Sun–Earth Lagrange points L3, L4, and L5. The three spacecrafts range interferometrically with one another with an arm length of about 260 million kilometers. In order to attain the required sensitivity for ASTROD-GW, laser frequency noise must be suppressed to below the secondary noises such as the optical path noise, acceleration noise, etc. For suppressing laser frequency noise, we need to use time delay interferometry (TDI) to match the two different optical paths (times of travel). Since planets and other solar-system bodies perturb the orbits of ASTROD-GW spacecraft and affect the TDI, we simulate the time delay numerically using CGC 2.7 (here, CGC stands for center for gravitation and cosmology) ephemeris framework. To conform to the ASTROD-GW planning, we work out a set of 20-year optimized mission orbits of ASTROD-GW spacecraft starting at June 21, 2028, and calculate the differences in optical path in the first and second generation TDIs separately for one-detector case. In our optimized mission orbits of 20 years, changes of arm lengths are less than 0.0003 AU; the relative Doppler velocities are all less than 3m/s. All the second generation TDI for one-detector case satisfies the ASTROD-GW requirement.
文摘ASTROD-GW (ASTROD [astrodynamical space test of relativity using optical devices] optimized for gravitational wave detection) is a gravitational-wave mission with the aim of detecting gravitational waves from massive black holes, extreme mass ratio inspirais (EMRIs) and galactic compact binaries together with testing relativistic gravity and probing dark energy and cosmology. Mission orbits of the 3 spacecrafts forming a nearly equilateral triangular array are chosen to be near the Sun-Earth Lagrange points L3, L4, and L5. The 3 space, crafts range interferometrically with one another with arm length about 260 million kilometers. For 260 times longer arm length, the detection sensitivity of ASTROD- GW is 260 fold better than that of eLISA/NGO in the lower frequency region by assuming the same acceleration noise. Therefore, ASTROD-GW will be a better cosmological probe. In previous papers, we have worked out the time delay interferometry (TDI) for the ecliptic formation. To resolve the reflection ambiguity about the ecliptic plane in source position determination, we have changed the basic formation into slightly inclined formation with half-year precessionperiod. In this paper, we optimize a set of 10-year inclined ASTROD-GW mission orbits numerically using ephemeris framework starting at June 21, 2035, including cases of inclination angle with 0° (no inclination), 0.5°, 1.0°, 1.5°, 2.0°, 2.5°, and 3.0°. We simulate the time delays of the first and second generation TDI configurations for the different inclinations, and compare/analyse the numerical results to attain the requisite sensitivity of ASTROD-GW by suppressing laser frequency noise below the secondary noises. To explicate our calculation process for different inclination cases, we take the 1.0° as an example to show the orbit optimization and TDI simulation.
文摘Traditional protocols in wireless sensor networks follow the strict layering techniques which lead to the degradation in performance of the QoS (Quality of Service) parameters. Battery powered tiny sensor nodes with constraints of energy and guaranteed time require the efficient communication protocols with innovative and optimized approach to attain the objectives of WSN. Especially, these requirements become more stringent with the emergence of novel applications based on WSN. In order to find an optimized solution to this, cross layer-based approach which allows the cooperation, synchronization and communication among the layers, seems to be appropriate. In this paper, a realistic cross-layer protocol has been developed taking into considerations of MAC and Physical layer to further optimize the QoS parameters of already developed Energy Efficient Inter Cluster Coordination Protocol (EEICCP) at the Network layer level. In this paper we endeavor to concentrate on the enhancement of reliability parameter of QoS and results are validated through simulations done in MATLAB.
基金supported by the National Key Research and Development Program (grant number:2021YFC2701202)。
文摘In response to the incidence of cervical intraepithelial neoplasia and cervical cancer in China and global screening strategies,a collaborative effort was undertaken by seven Chinese medical associations to develop this guideline for cervical cancer screening.The guideline recommends high-risk human papillomavirus(hr-HPV)testing as the preferred method for primary screening,which should have been approved by authoritative institutions and clinically validated for primary screening.In areas without access to HPV testing,cytology can be used as an alternative.However,it is recommended to replace cytology with HPV-based screening as conditions permit.Cotesting(HPV testing in combination with cytology)is recommended for areas with sufficient medical resources,opportunistic screening populations,and partial special populations.The guideline recommends that individuals with a cervix initiate cervical cancer screening at the age 25 years and undergo HPV testing alone or cotesting every five years,or cytology alone every three years.Women over the age of 65 who have had documented adequate negative prior screening in the past may terminate screening.Corresponding screening programs are proposed for different special populations.The development of these guidelines is an important step in the effort to eliminate cervical cancer in China.