Grain yield in cereal crops is a complex trait controlled by multiple genes and influenced by developmental processes and environment. Here we report the effects of alleles Rht8 and Ppd-D1 a on plant height, time to h...Grain yield in cereal crops is a complex trait controlled by multiple genes and influenced by developmental processes and environment. Here we report the effects of alleles Rht8 and Ppd-D1 a on plant height, time to heading, and grain yield and its component traits. Association analysis and quantitative trait locus mapping using phenotypic data from 15 environments led to the following conclusions. First, both Rht8 and Ppd-D1 a reduce plant height. However, Ppd-D1 a but not Rht8 causes earlier heading.Second, both Rht8 and Ppd-D1 a promote grain yield and affect component traits. Their combined effects are substantially larger than those conferred by either allele alone.Third, promotion of grain yield by Rht8 and Ppd-D1 a is through increasing fertile spikelet number. We speculate that Rht8 and Ppd-D1 a act independently and additively in control of plant height, grain yield and yield component. Combination of the two alleles is desirable for adjusting plant height and enhancing grain yield and abiotic stress tolerance.展开更多
Adaptation to abiotic stresses like drought is an important acquirement of agriculturally relevant crops like maize. Development of enhanced drought tolerance in crops grown in climatic zones where drought is a very d...Adaptation to abiotic stresses like drought is an important acquirement of agriculturally relevant crops like maize. Development of enhanced drought tolerance in crops grown in climatic zones where drought is a very dominant stress factor therefore plays an essential role in plant breeding. Previous studies demonstrated that corn yield potential and enhanced stress tolerance are associated traits. In this study, we analyzed six different maize hybrids for their ability to deal with drought stress in a greenhouse experiment. We were able to combine data from morphophysiological parameters measured under well-watered conditions and under water restriction with metabolic data from different organs. These different organs possessed distinct metabolite compositions, with the leaf blade displaying the most considerable metabolome changes following water deficiency. Whilst we could show a general increase in metabolite levels under drought stress, including changes in amino acids, sugars, sugar alcohols, and intermediates of the TCA cycle, these changes were not differential between maize hybrids that had previously been designated based on field trial data as either drought-tolerant or susceptible. The fact that data described here resulted from a greenhouse experiment with rather different growth conditions compared to natural ones in the field may explain why tolerance groups could not be confirmed in this study. We were, however, able to highlight several metabolites that displayed conserved responses to drought as well as metabolites whose levels correlated well with certain physiological traits.展开更多
基金supported by the Ministry of Science and Technology of China (2017YFD0101000)Science and Technology Service Network Program (STS Program) of Chinese Academy of Sciences (KFJ-STS-ZDTP-024)National Natural Science Foundation of China (31371611)
文摘Grain yield in cereal crops is a complex trait controlled by multiple genes and influenced by developmental processes and environment. Here we report the effects of alleles Rht8 and Ppd-D1 a on plant height, time to heading, and grain yield and its component traits. Association analysis and quantitative trait locus mapping using phenotypic data from 15 environments led to the following conclusions. First, both Rht8 and Ppd-D1 a reduce plant height. However, Ppd-D1 a but not Rht8 causes earlier heading.Second, both Rht8 and Ppd-D1 a promote grain yield and affect component traits. Their combined effects are substantially larger than those conferred by either allele alone.Third, promotion of grain yield by Rht8 and Ppd-D1 a is through increasing fertile spikelet number. We speculate that Rht8 and Ppd-D1 a act independently and additively in control of plant height, grain yield and yield component. Combination of the two alleles is desirable for adjusting plant height and enhancing grain yield and abiotic stress tolerance.
文摘Adaptation to abiotic stresses like drought is an important acquirement of agriculturally relevant crops like maize. Development of enhanced drought tolerance in crops grown in climatic zones where drought is a very dominant stress factor therefore plays an essential role in plant breeding. Previous studies demonstrated that corn yield potential and enhanced stress tolerance are associated traits. In this study, we analyzed six different maize hybrids for their ability to deal with drought stress in a greenhouse experiment. We were able to combine data from morphophysiological parameters measured under well-watered conditions and under water restriction with metabolic data from different organs. These different organs possessed distinct metabolite compositions, with the leaf blade displaying the most considerable metabolome changes following water deficiency. Whilst we could show a general increase in metabolite levels under drought stress, including changes in amino acids, sugars, sugar alcohols, and intermediates of the TCA cycle, these changes were not differential between maize hybrids that had previously been designated based on field trial data as either drought-tolerant or susceptible. The fact that data described here resulted from a greenhouse experiment with rather different growth conditions compared to natural ones in the field may explain why tolerance groups could not be confirmed in this study. We were, however, able to highlight several metabolites that displayed conserved responses to drought as well as metabolites whose levels correlated well with certain physiological traits.