Particulate nitrate,a key component of fine particles,forms through the intricate gas-to-particle conversion process.This process is regulated by the gas-to-particle conversion coefficient of nitrate(ε(NO_(3)^(-))).T...Particulate nitrate,a key component of fine particles,forms through the intricate gas-to-particle conversion process.This process is regulated by the gas-to-particle conversion coefficient of nitrate(ε(NO_(3)^(-))).The mechanism betweenε(NO_(3)^(-))and its drivers is highly complex and nonlinear,and can be characterized by machine learning methods.However,conventional machine learning often yields results that lack clear physical meaning and may even contradict established physical/chemical mechanisms due to the influence of ambient factors.It urgently needs an alternative approach that possesses transparent physical interpretations and provides deeper insights into the impact ofε(NO_(3)^(-)).Here we introduce a supervised machine learning approachdthe multilevel nested random forest guided by theory approaches.Our approach robustly identifies NH4 t,SO_(4)^(2-),and temperature as pivotal drivers forε(NO_(3)^(-)).Notably,substantial disparities exist between the outcomes of traditional random forest analysis and the anticipated actual results.Furthermore,our approach underscores the significance of NH4 t during both daytime(30%)and nighttime(40%)periods,while appropriately downplaying the influence of some less relevant drivers in comparison to conventional random forest analysis.This research underscores the transformative potential of integrating domain knowledge with machine learning in atmospheric studies.展开更多
High levels of fine particulate matter(PM_(2.5))is linked to poor air quality and premature deaths,so haze pollution deserves the attention of the world.As abundant inorganic components in PM_(2.5),ammonium nitrate(NH...High levels of fine particulate matter(PM_(2.5))is linked to poor air quality and premature deaths,so haze pollution deserves the attention of the world.As abundant inorganic components in PM_(2.5),ammonium nitrate(NH_(4)NO_(3))formation includes two processes,the diffusion process(molecule of ammonia and nitric acid move from gas phase to liquid phase)and the ionization process(subsequent dissociation to form ions).In this study,we discuss the impact of meteorological factors,emission sources,and gaseous precursors on NH4NO3 formation based on thermodynamic theory,and identify the dominant factors during clean periods and haze periods.Results show that aerosol liquid water content has a more significant effect on ammonium nitrate formation regardless of the severity of pollution.The dust source is dominant emission source in clean periods;while a combination of coal combustion and vehicle exhaust sources is more important in haze periods.And the control of ammonia emission is more effective in reducing the formation of ammonium nitrate.The findings of this work inform the design of effective strategies to control particulate matter pollution.展开更多
Fine particulate matter(PM_(2.5))and ozone(O_(3))pollutions are prevalent air quality issues in China.Volatile organic compounds(VOCs)have significant impact on the formation of O_(3)and secondary organic aerosols(SOA...Fine particulate matter(PM_(2.5))and ozone(O_(3))pollutions are prevalent air quality issues in China.Volatile organic compounds(VOCs)have significant impact on the formation of O_(3)and secondary organic aerosols(SOA)contributing PM_(2.5).Herein,we investigated 54 VOCs,O_(3)and SOA in Tianjin from June 2017 to May 2019 to explore the non-linear relationship among O_(3),SOA and VOCs.The monthly patterns of VOCs and SOA concentrations were characterized by peak values during October to March and reached a minimum from April to September,but the observed O_(3)was exactly the opposite.Machine learning methods resolved the importance of individual VOCs on O_(3)and SOA that alkenes(mainly ethylene,propylene,and isoprene)have the highest importance to O_(3)formation;alkanes(C_(n),n≥6)and aromatics were the main source of SOA formation.Machine learning methods revealed and emphasized the importance of photochemical consumptions of VOCs to O_(3)and SOA formation.Ozone formation potential(OFP)and secondary organic aerosol formation potential(SOAFP)calculated by consumed VOCs quantitatively indicated that more than 80%of the consumed VOCs were alkenes which dominated the O_(3)formation,and the importance of consumed aromatics and alkenes to SOAFP were 40.84%and 56.65%,respectively.Therein,isoprene contributed the most to OFP at 41.45%regardless of the season,while aromatics(58.27%)contributed the most to SOAFP in winter.Collectively,our findings can provide scientific evidence on policymaking for VOCs controls on seasonal scales to achieve effective reduction in both SOA and O_(3).展开更多
基金supported by the National Natural Science Foundation of China(42077191)the National Key Research and Development Program of China(2022YFC3703400)+1 种基金the Blue Sky Foundation,Tianjin Science and Technology Plan Project(18PTZWHZ00120)Fundamental Research Funds for the Central Universities(63213072 and 63213074).
文摘Particulate nitrate,a key component of fine particles,forms through the intricate gas-to-particle conversion process.This process is regulated by the gas-to-particle conversion coefficient of nitrate(ε(NO_(3)^(-))).The mechanism betweenε(NO_(3)^(-))and its drivers is highly complex and nonlinear,and can be characterized by machine learning methods.However,conventional machine learning often yields results that lack clear physical meaning and may even contradict established physical/chemical mechanisms due to the influence of ambient factors.It urgently needs an alternative approach that possesses transparent physical interpretations and provides deeper insights into the impact ofε(NO_(3)^(-)).Here we introduce a supervised machine learning approachdthe multilevel nested random forest guided by theory approaches.Our approach robustly identifies NH4 t,SO_(4)^(2-),and temperature as pivotal drivers forε(NO_(3)^(-)).Notably,substantial disparities exist between the outcomes of traditional random forest analysis and the anticipated actual results.Furthermore,our approach underscores the significance of NH4 t during both daytime(30%)and nighttime(40%)periods,while appropriately downplaying the influence of some less relevant drivers in comparison to conventional random forest analysis.This research underscores the transformative potential of integrating domain knowledge with machine learning in atmospheric studies.
基金the National Natural Science Foundation of China(No.42077191)the Fundamental Research Funds for the Central Universities(Nos.63213072,63213074)+1 种基金the GDAS’Project of Science and Technology Development(No.2021GDASYL-20210103058)the Guangdong Basic and Applied Basic Research Foundation(No.2022A1515012165),The Blue Sky Foundation.
文摘High levels of fine particulate matter(PM_(2.5))is linked to poor air quality and premature deaths,so haze pollution deserves the attention of the world.As abundant inorganic components in PM_(2.5),ammonium nitrate(NH_(4)NO_(3))formation includes two processes,the diffusion process(molecule of ammonia and nitric acid move from gas phase to liquid phase)and the ionization process(subsequent dissociation to form ions).In this study,we discuss the impact of meteorological factors,emission sources,and gaseous precursors on NH4NO3 formation based on thermodynamic theory,and identify the dominant factors during clean periods and haze periods.Results show that aerosol liquid water content has a more significant effect on ammonium nitrate formation regardless of the severity of pollution.The dust source is dominant emission source in clean periods;while a combination of coal combustion and vehicle exhaust sources is more important in haze periods.And the control of ammonia emission is more effective in reducing the formation of ammonium nitrate.The findings of this work inform the design of effective strategies to control particulate matter pollution.
基金financially supported by the National Key Research and Development Program of China(No.2018 YFE0106900)supported by National Natural Science Foundation of China(Nos.42077191,41775149)+2 种基金Fundamental Research Funds for the Central Universities(No.63213072)National Research Program for Key Issues in Air Pollution Control(No.DQGG-05-30)the Blue Sky Foundation
文摘Fine particulate matter(PM_(2.5))and ozone(O_(3))pollutions are prevalent air quality issues in China.Volatile organic compounds(VOCs)have significant impact on the formation of O_(3)and secondary organic aerosols(SOA)contributing PM_(2.5).Herein,we investigated 54 VOCs,O_(3)and SOA in Tianjin from June 2017 to May 2019 to explore the non-linear relationship among O_(3),SOA and VOCs.The monthly patterns of VOCs and SOA concentrations were characterized by peak values during October to March and reached a minimum from April to September,but the observed O_(3)was exactly the opposite.Machine learning methods resolved the importance of individual VOCs on O_(3)and SOA that alkenes(mainly ethylene,propylene,and isoprene)have the highest importance to O_(3)formation;alkanes(C_(n),n≥6)and aromatics were the main source of SOA formation.Machine learning methods revealed and emphasized the importance of photochemical consumptions of VOCs to O_(3)and SOA formation.Ozone formation potential(OFP)and secondary organic aerosol formation potential(SOAFP)calculated by consumed VOCs quantitatively indicated that more than 80%of the consumed VOCs were alkenes which dominated the O_(3)formation,and the importance of consumed aromatics and alkenes to SOAFP were 40.84%and 56.65%,respectively.Therein,isoprene contributed the most to OFP at 41.45%regardless of the season,while aromatics(58.27%)contributed the most to SOAFP in winter.Collectively,our findings can provide scientific evidence on policymaking for VOCs controls on seasonal scales to achieve effective reduction in both SOA and O_(3).