The research progress of deep and ultra-deep drilling fluid technology systematically reviewed,the key problems existing are analyzed,and the future development direction is proposed.In view of the high temperature,hi...The research progress of deep and ultra-deep drilling fluid technology systematically reviewed,the key problems existing are analyzed,and the future development direction is proposed.In view of the high temperature,high pressure and high stress,fracture development,wellbore instability,drilling fluid lost circulation and other problems faced in the process of deep and ultra-deep complex oil and gas drilling,scholars have developed deep and ultra-deep high-temperature and high-salt resistant water-based drilling fluid technology,high-temperature resistant oil-based/synthetic drilling fluid technology,drilling fluid technology for reservoir protection and drilling fluid lost circulation control technology.However,there are still some key problems such as insufficient resistance to high temperature,high pressure and high stress,wellbore instability and serious lost circulation.Therefore,the development direction of deep and ultra-deep drilling fluid technology in the future is proposed:(1)The technology of high-temperature and high-salt resistant water-based drilling fluid should focus on improving high temperature stability,improving rheological properties,strengthening filtration control and improving compatibility with formation.(2)The technology of oil-based/synthetic drilling fluid resistant to high temperature should further study in the aspects of easily degradable environmental protection additives with low toxicity such as high temperature stabilizer,rheological regulator and related supporting technologies.(3)The drilling fluid technology for reservoir protection should be devoted to the development of new high-performance additives and materials,and further improve the real-time monitoring technology by introducing advanced sensor networks and artificial intelligence algorithms.(4)The lost circulation control of drilling fluid should pay more attention to the integration and application of intelligent technology,the research and application of high-performance plugging materials,the exploration of diversified plugging techniques and methods,and the improvement of environmental protection and production safety awareness.展开更多
Pore pressure is essential data in drilling design,and its accurate prediction is necessary to ensure drilling safety and improve drilling efficiency.Traditional methods for predicting pore pressure are limited when f...Pore pressure is essential data in drilling design,and its accurate prediction is necessary to ensure drilling safety and improve drilling efficiency.Traditional methods for predicting pore pressure are limited when forming particular structures and lithology.In this paper,a machine learning algorithm and effective stress theorem are used to establish the transformation model between rock physical parameters and pore pressure.This study collects data from three wells.Well 1 had 881 data sets for model training,and Wells 2 and 3 had 538 and 464 data sets for model testing.In this paper,support vector machine(SVM),random forest(RF),extreme gradient boosting(XGB),and multilayer perceptron(MLP)are selected as the machine learning algorithms for pore pressure modeling.In addition,this paper uses the grey wolf optimization(GWO)algorithm,particle swarm optimization(PSO)algorithm,sparrow search algorithm(SSA),and bat algorithm(BA)to establish a hybrid machine learning optimization algorithm,and proposes an improved grey wolf optimization(IGWO)algorithm.The IGWO-MLP model obtained the minimum root mean square error(RMSE)by using the 5-fold cross-validation method for the training data.For the pore pressure data in Well 2 and Well 3,the coefficients of determination(R^(2))of SVM,RF,XGB,and MLP are 0.9930 and 0.9446,0.9943 and 0.9472,0.9945 and 0.9488,0.9949 and 0.9574.MLP achieves optimal performance on both training and test data,and the MLP model shows a high degree of generalization.It indicates that the IGWO-MLP is an excellent predictor of pore pressure and can be used to predict pore pressure.展开更多
For the analysis of the formation damage caused by the compound function of drilling fluid and fracturing fluid,the prediction method for dynamic invasion depth of drilling fluid is developed considering the fracture ...For the analysis of the formation damage caused by the compound function of drilling fluid and fracturing fluid,the prediction method for dynamic invasion depth of drilling fluid is developed considering the fracture extension due to shale minerals erosion by oil-based drilling fluid.With the evaluation for the damage of natural and hydraulic fractures caused by mechanical properties weakening of shale fracture surface,fracture closure and rock powder blocking,the formation damage pattern is proposed with consideration of the compound effect of drilling fluid and fracturing fluid.The formation damage mechanism during drilling and completion process in shale reservoir is revealed,and the protection measures are raised.The drilling fluid can deeply invade into the shale formation through natural and induced fractures,erode shale minerals and weaken the mechanical properties of shale during the drilling process.In the process of hydraulic fracturing,the compound effect of drilling fluid and fracturing fluid further weakens the mechanical properties of shale,results in fracture closure and rock powder shedding,and thus induces stress-sensitive damage and solid blocking damage of natural/hydraulic fractures.The damage can yield significant conductivity decrease of fractures,and restrict the high and stable production of shale oil and gas wells.The measures of anti-collapse and anti-blocking to accelerate the drilling of reservoir section,forming chemical membrane to prevent the weakening of the mechanical properties of shale fracture surface,strengthening the plugging of shale fracture and reducing the invasion range of drilling fluid,optimizing fracturing fluid system to protect fracture conductivity are put forward for reservoir protection.展开更多
During ultradeep oil and gas drilling,fluid loss reducers are highly important for water-based drilling fluids,while preparing high temperature-and salt-resistance fluid loss reducers with excellent rheology and filtr...During ultradeep oil and gas drilling,fluid loss reducers are highly important for water-based drilling fluids,while preparing high temperature-and salt-resistance fluid loss reducers with excellent rheology and filtration performance remains a challenge.Herein,a micro-crosslinked amphoteric hydrophobic association copolymer(i.e.,DADC)was synthesized using N,N-dimethyl acrylamide,diallyl dimethyl ammonium chloride,2-acrylamido-2-methylpropane sulfonic acid,hydrophobic monomer,and pentaerythritol triallyl ether crosslinker.Due to the synergistic effects of hydrogen bonds,electrostatic interaction,hydrophobic association,and micro-crosslinking,the DADC copolymer exhibited outstanding temperature-and salt-resistance.The rheological experiments have shown that the DADC copolymer had excellent shear dilution performance and a certain degree of salt-responsive viscosity-increasing performance.The DADC copolymer could effectively adsorb on the surface of bentonite particles through electrostatic interaction and hydrogen bonds,which bring more negative charge to the bentonite,thus improving the hydration and dispersion of bentonite particles as well as the colloidal stability of the drilling fluids.Moreover,the drilling fluids constructed based on the DADC copolymer exhibited satisfactory rheological and filtration properties(FLHTHP=12 m L)after aging at high temperatures(up to200℃)and high salinity(saturated salt)environments.Therefore,this work provided new insights into designing and fabricating high-performance drilling fluid treatment agents,demonstrating good potential applications in deep and ultradeep drilling engineering.展开更多
Radial borehole fracturing that combines radial boreholes with hydraulic fracturing is anticipated to improve the output of tight oil and gas reservoirs.This paper aims to investigate fracture propagation and pressure...Radial borehole fracturing that combines radial boreholes with hydraulic fracturing is anticipated to improve the output of tight oil and gas reservoirs.This paper aims to investigate fracture propagation and pressure characteristics of radial borehole fracturing in multiple layers.A series of laboratory experiments with artificial rock samples(395 mm×395 mm×395 mm)was conducted using a true triaxial fracturing device.Three crucial factors corresponding to the vertical distance of adjacent radial borehole layers(vertical distance),the azimuth and diameter of the radial borehole are examined.Experimental results show that radial borehole fracturing in multiple layers generates diverse fracture geometries.Four types of fractures are identified based on the connectivity between hydraulic fractures and radial boreholes.The vertical distance significantly influences fracture propagation perpendicular to the radial borehole axis.An increase in the vertical distance impedes fracture connection across multiple radial borehole layers and reduces the fracture propagation distance along the radial borehole axis.The azimuth also influences fracture propagation along the radial borehole axis.Increasing the azimuth reduces the guiding ability of radial boreholes,which makes the fracture quickly curve to the maximum horizontal stress direction.The breakdown pressure correlates with diverse fracture geometries observed.When the fractures connect multi-layer radial boreholes,increasing the vertical distance decreases the breakdown pressure.Decreasing the azimuth and increasing the diameter also decrease the breakdown pressure.The extrusion force exists between the adjacent fractures generated in radial boreholes in multiple rows,which plays a crucial role in enhancing the guiding ability of radial boreholes and results in higher breakdown pressure.The research provides valuable theoretical insights for the field application of radial borehole fracturing technology in tight oil and gas reservoirs.展开更多
To investigate the specific creep behavior of ultra-deep buried salt during oil and gas exploitation,a set of triaxial creep experiments was conducted at elevated temperatures with constant axial pressure and unloadin...To investigate the specific creep behavior of ultra-deep buried salt during oil and gas exploitation,a set of triaxial creep experiments was conducted at elevated temperatures with constant axial pressure and unloading confining pressure conditions.Experimental results show that the salt sample deforms more significantly with the increase of applied temperature and deviatoric loading.The accelerated creep phase is not occurring until the applied temperature reaches 130℃,and higher temperature is beneficial to the occurrence of accelerated creep.To describe the specific creep behavior,a novel three-dimensional(3D)creep constitutive model is developed that incorporates the thermal and mechanical variables into mechanical elements.Subsequently,the standard particle swarm optimization(SPSO)method is adopted to fit the experimental data,and the sensibility of key model parameters is analyzed to further illustrate the model function.As a result,the model can accurately predict the creep behavior of salt under the coupled thermo-mechanical effect in deep-buried condition.Based on the research results,the creep mechanical behavior of wellbore shrinkage is predicted in deep drilling projects crossing salt layer,which has practical implications for deep rock mechanics problems.展开更多
Nanoparticles(NPs)have gained significant attention as a functional material due to their ability to effectively enhance pressure reduction in injection processes in ultra-low permeability reservoirs.NPs are typically...Nanoparticles(NPs)have gained significant attention as a functional material due to their ability to effectively enhance pressure reduction in injection processes in ultra-low permeability reservoirs.NPs are typically studied in controlled laboratory conditions,and their behavior in real-world,complex environments such as ultra-low permeability reservoirs,is not well understood due to the limited scope of their applications.This study investigates the efficacy and underlying mechanisms of NPs in decreasing injection pressure under various injection conditions(25—85℃,10—25 MPa).The results reveal that under optimal injection conditions,NPs effectively reduce injection pressure by a maximum of 22.77%in core experiment.The pressure reduction rate is found to be positively correlated with oil saturation and permeability,and negatively correlated with temperature and salinity.Furthermore,particle image velocimetry(PIV)experiments(25℃,atmospheric pressure)indicate that the pressure reduction is achieved by NPs through the reduction of wall shear resistance and wettability change.This work has important implications for the design of water injection strategies in ultra-low permeability reservoirs.展开更多
On the basis of reviewing the development history of drilling engineering technology over a century, this paper describes the technical and scientific background of downhole control engineering, discusses its basic is...On the basis of reviewing the development history of drilling engineering technology over a century, this paper describes the technical and scientific background of downhole control engineering, discusses its basic issues, discipline frame and main study contents, introduces the research progress of downhole control engineering in China over the past 30 years, and envisions the development direction of downhole control engineering in the future. The author proposed the study subject of well trajectory control theory and technology in 1988, and further proposed the concept of downhole control engineering in 1993. Downhole control engineering is a discipline branch, which applies the perspectives and methods of engineering control theory to solve downhole engineering control issues in oil and gas wells; meanwhile, it is an application technology field with interdisciplinarity. Downhole control engineering consists of four main aspects; primarily, investigations about dynamics of downhole system and analysis methods of control signals; secondly, designs of downhole control mechanisms and systems, research of downhole parameters collections and transmission techniques; thirdly, development of downhole control engineering products; fourthly, development of experimental methods and the laboratories. Over the past 30 years, the author and his research group have achieved a number of progress and accomplishments in the four aspects mentioned above. As a research field and a disciplinary branch of oil and gas engineering, downhole control engineering is stepping into a broader and deeper horizon.展开更多
The excellent mechanical properties of supramolecular gel could adapt to the complex reservoir environment and had broad application prospects in the field of oil and gas drilling and production engineering.In this pa...The excellent mechanical properties of supramolecular gel could adapt to the complex reservoir environment and had broad application prospects in the field of oil and gas drilling and production engineering.In this paper,a supramolecular gel based on hydrophobic association and hydrogen bonding was prepared by micellar copolymerization,which could be used to plug fractures and pores in formations.Supramolecular gel was a gel network system with high performance characteristics formed by self-assembly of non-covalent bond interaction.The rheological properties,mechanical mechanics,temperature resistance and swelling ability of supramolecular gel were studied.The results showed that the supramolecular gel had a dense three-dimensional network structure with open and interconnected pore structures,which could exhibit good rheological properties and strong viscoelastic recovery ability.The mechanical properties of the supramolecular gel were excellent,it had a tensile stress of 0.703 MPa and an elongation at break of 1803%.When the compressive strain was 96%,the compressive stress could reach 14.5 MPa.Supramolecular gel also showed good temperature resistance and swelling properties.At the aging temperature of 135℃,supramolecular gels still maintained good gel strength,and it only took 12 h to reach the equilibrium swelling ratio of 35.87 in 1%NaCl solution.It was also found that supramolecular gel in low concentration saline(1%NaCl solution)showed relatively faster swelling than high concentration saline(25%NaCl solution).The swelling process of the supramolecular gel was non-Fick diffusion(typeⅡ).This indicated that the organic/inorganic permeability network was well formed.Therefore,the diffusion rate of small molecules could be guaranteed to be equal to the relaxation rate of large molecules before and after the phase transition temperature.In addition to the diffusion of water molecules,the swelling process of the supramolecular gel was also affected by the relaxation of gel network and polymer chain segment,the interaction between water molecules and polymer network and the groups of polymer network and other factors.Supramolecular gel particles could be used as plugging materials for drilling fluids,which had excellent ability to plug formation fractures and pores.The plugging ability of the supramolecular gel was up to 6.7 MPa for 0.5 mm fracture width,and 9.6 MPa for porous media with 5 mD permeability.Compared with HT-PPG gel particles commonly used in oil fields,supramolecular gel particles had better plugging ability on fractures and porous media.The development and application of supramolecular gel had far-reaching significance for promoting the functional application of polymer materials in drilling and production engineering.展开更多
A high-quality plug of the abandoned wellbore is considered an essential technical aspect of the oil and gas well abandonment technology system. This paper presents a method of active mechanical excitation to enhance ...A high-quality plug of the abandoned wellbore is considered an essential technical aspect of the oil and gas well abandonment technology system. This paper presents a method of active mechanical excitation to enhance the quality of wellbore plug barriers. An indoor simulation platform is developed, and the effects of different combinations of vibration frequency, amplitude and duration on the properties of the wellbore plug cement material are investigated. It is observed that the optimal combination of excitation parameters occurs at a vibration frequency of 15 Hz, a vibration time of 6 min, and a vibration amplitude of 3 mm. Compared with the condition without the vibration process, the cementing strength, compressive strength, and tensile strength of wellbore cement plug with the optimal mechanical vibration process could increase by 51%, 38% and 20%, respectively, while the porosity decreases by 5%. As determined by scanning electron microscopy of the set cement's microstructure, mechanical vibration effectively eliminates internal porosity and improves the set cement's density. The optimal excitation parameters obtained from the test can guide the design of the vibration plugging tool. The designed vibration plugging tool is simulated in the near field. The cement plug cementation quality tester tests the vibrating and non-vibrating samples, and the cementation ratio is calculated. The test results show that the average cementation ratio of vibrating samples is 0.89375, and that of non-vibrating samples is 0.70625, and the cementation quality is improved by 27%. It is concluded that it not only provides essential data for the design of mechanical vibration plug apparatus, on-site vibration plugs, and the development of operational specifications for vibration plugs, but also provides solid engineering guidance.展开更多
With the exploration and development of deep and ultra-deep oil and gas,high torque and high friction during the drilling of deep and ultra-deep wells become one of the key issues affecting drilling safety and drillin...With the exploration and development of deep and ultra-deep oil and gas,high torque and high friction during the drilling of deep and ultra-deep wells become one of the key issues affecting drilling safety and drilling speed.Meanwhile,the high temperature and high salt problem in deep formations is prominent,which poses a major challenge to the lubricity of drilling fluids under high temperature and high salt.This paper reports an organic borate ester SOP as an environmentally friendly drilling fluid lubricant.The performance evaluation results show that when 1%lubricant SOP is added to the fresh water-based mud,the lubrication coefficient decreases from 0.631 to 0.046,and the reduction rate of lubrication coefficient is 92.7%.Under the conditions of 210℃ and 30%NaCl,the reduction rate of lubricating coefficient of the base slurry with 1%SOP was still remain 81.5%.After adding 1%SOP,the wear volume decreased by 94.11%compared with the base slurry.The contact resistance experiment during the friction process shows that SOP can form a thick adsorption film on the friction surface under high temperature and high salt conditions,thus effectively reducing the friction resistance.Molecular dynamics simulation shows that lubricant SOP can be physically adsorbed on the surface of drilling tool and borehole wall through hydrogen bond and van der Waals force.XPS analysis further shows that SOP adsorbs on the friction surface and reacts with metal atoms on the friction surface to form a chemically reactive film.Therefore,under high temperature and high salt conditions,the synergistic effect of physical adsorption film and chemical reaction film effectively reduces the frictional resistance and wear of the friction surface.In addition,SOP is non-toxic and easy to degrade.Therefore,SOP is a highly effective and environmentally friendly lubricant in high temperature and high salt drilling fluid.展开更多
By summarizing the composition,classification,and performance characterization of functional adhesive materials,the adhesion mechanisms of functional adhesive materials,such as adsorption/surface reaction,diffusion,me...By summarizing the composition,classification,and performance characterization of functional adhesive materials,the adhesion mechanisms of functional adhesive materials,such as adsorption/surface reaction,diffusion,mechanical interlocking,and electrostatic adsorption,are expounded.The research status of these materials in oil and gas drilling and production engineering field such as lost circulation prevention/control,wellbore stabilization,hydraulic fracturing,and profile control and water plugging,and their application challenges and prospects in oil and gas drilling and production are introduced comprehensively.According to the applications of functional adhesive materials in the field of oil and gas drilling and production at this stage,the key research directions of functional adhesive materials in the area of oil and gas drilling and production are proposed:(1)blending and modifying thermoplastic resins or designing curable thermoplastic resins to improve the bonding performance and pressure bearing capacity of adhesive lost circulation materials;(2)introducing low-cost adhesive groups and positive charge structures into polymers to reduce the cost of wellbore strengthening agents and improve their adhesion performance on the wellbore;(3)introducing thermally reversible covalent bond into thermosetting resin to prevent backflow of proppant and improve the compressive strength of adhesive proppant;(4)introducing thermally reversible covalent bonds into thermoplastic polymers to improve the temperature resistance,salt-resistance and water shutoff performance of adhesive water shutoff agents.展开更多
Many scholars have focused on applying machine learning models in bottom hole pressure (BHP) prediction. However, the complex and uncertain conditions in deep wells make it difficult to capture spatial and temporal co...Many scholars have focused on applying machine learning models in bottom hole pressure (BHP) prediction. However, the complex and uncertain conditions in deep wells make it difficult to capture spatial and temporal correlations of measurement while drilling (MWD) data with traditional intelligent models. In this work, we develop a novel hybrid neural network, which integrates the Convolution Neural Network (CNN) and the Gate Recurrent Unit (GRU) for predicting BHP fluctuations more accurately. The CNN structure is used to analyze spatial local dependency patterns and the GRU structure is used to discover depth variation trends of MWD data. To further improve the prediction accuracy, we explore two types of GRU-based structure: skip-GRU and attention-GRU, which can capture more long-term potential periodic correlation in drilling data. Then, the different model structures tuned by the Bayesian optimization (BO) algorithm are compared and analyzed. Results indicate that the hybrid models can extract spatial-temporal information of data effectively and predict more accurately than random forests, extreme gradient boosting, back propagation neural network, CNN and GRU. The CNN-attention-GRU model with BO algorithm shows great superiority in prediction accuracy and robustness due to the hybrid network structure and attention mechanism, having the lowest mean absolute percentage error of 0.025%. This study provides a reference for solving the problem of extracting spatial and temporal characteristics and guidance for managed pressure drilling in complex formations.展开更多
Sticking is the most serious cause of failure in complex drilling operations.In the present work a novel“early warning”method based on an artificial intelligence algorithm is proposed to overcome some of the known pr...Sticking is the most serious cause of failure in complex drilling operations.In the present work a novel“early warning”method based on an artificial intelligence algorithm is proposed to overcome some of the known pro-blems associated with existing sticking-identification technologies.The method is tested against a practical case study(Southern Sichuan shale gas drilling operations).It is shown that the twelve sets of sticking fault diagnostic results obtained from a simulation are all consistent with the actual downhole state;furthermore,the results from four groups of verification samples are also consistent with the actual downhole state.This shows that the pro-posed training-based model can effectively be applied to practical situations.展开更多
Whether hydraulic fractures could connect multiple gas zones in the vertical plane is the key to fracturing treatment to jointly exploit coalbed methane and tight sandstone gas through integrative hydraulic fracturing...Whether hydraulic fractures could connect multiple gas zones in the vertical plane is the key to fracturing treatment to jointly exploit coalbed methane and tight sandstone gas through integrative hydraulic fracturing in tight sandstone–coal interbedded formations. Laboratory true triaxial hydraulic fracturing experiments were conducted on layered specimens with di erent combination types of natural sandstone and coal to simulate the propagation behavior of hydraulic fractures. The effects of the fracture initiation position, fracturing fluid viscosity and injection rate were discussed. The results showed that di erent fracture morphologies could be found. When initiating from coal seams, three patterns of fracture initiation and propagation were obtained:(1) The main hydraulic fracture initiated and propagated along the natural fractures and then diverged due to the effects of in situ stress and formed secondary fractures.(2) The hydraulic fracture initiated and propagated in the direction of the maximum horizontal stress.(3) Multiple fractures initiated and propagated at the same time. With the same fracturing fluid viscosity and injection rate, the hydraulic fractures initiating in sandstones had greater chances than those in coal seams to penetrate interfaces and enter neighboring layers. Excessively small or large fracturing fluid viscosity and injection rate would do harm to the vertical extension height of the induced fracture and improvement of the stimulated reservoir volume. Compared with operation parameters(fracturing fluid viscosity and injection rate), the natural weak planes in coals were considered to be the key factor that a ected the fracture propagation path. The experimental results would make some contributions to the development of tight sandstone–coal interbedded reservoirs.展开更多
Drilling fluids face failure during drilling deep reservoir with high temperature and high salt.The experimental results show that high temperature and salinity reduce the negative charge on the surface of bentonite i...Drilling fluids face failure during drilling deep reservoir with high temperature and high salt.The experimental results show that high temperature and salinity reduce the negative charge on the surface of bentonite in the drilling fluid and cause the coalescence of bentonite particles.As a result,the particles coalesce,the grid structure is destroyed,and the rheological properties,rock-carrying capacity and filtration properties are lost.To resolve the foregoing,in this study,0.05-wt%carbon nanotubes are introduced into a 4%bentonite drilling fluid under conditions where the temperature and concentration of added Na Cl reach 180°C and 10 wt%,respectively.The carbon nanotubes adsorb on the bentonite surface and increase the space among bentonite particles.The steric hindrance prevents the coalescence of bentonite in high temperature and high salt environment.Thus bentonite maintains the small size distribution of bentonite and supports the bentonite grid structure in the drilling fluid.As a result,the rock-carrying capacity of the drilling fluid increases by 85.1%.Moreover,the mud cake formed by the accumulation of small-sized bentonite particles is dense;consequently,the filtration of bentonite drilling fluid reduced by 30.2%.展开更多
The enrichment characteristics of deep shale gas in the Ordovician Wufeng-Silurian Longmaxi formations in the Sichuan Basin and its surrounding areas are investigated through experiments under high temperature and hig...The enrichment characteristics of deep shale gas in the Ordovician Wufeng-Silurian Longmaxi formations in the Sichuan Basin and its surrounding areas are investigated through experiments under high temperature and high pressure,including petrophysical properties analyses,triaxial stress test and isothermal adsorption of methane experiment.(1)The deep shale reservoirs drop significantly in porosity and permeability compared with shallower shale reservoirs,and contain mainly free gas.(2)With higher deviatoric stress and axial strain,the deep shale reservoirs have higher difficulty fracturing.(3)Affected by structural location and morphology,fracture characteristics,geofluid activity stages and intensity,deep shale gas reservoirs have more complicated preservation conditions.(4)To achieve the commercial development of deep shale gas reservoirs,deepening geological understanding is the basis,and exploring reservoir simulation technology befitting the geological features is the key.(5)The siliceous shale and limestone-bearing siliceous shale in the Metabolograptus persculptus-Parakidograptus acuminatus zones(LM1-LM3 graptolite zones)are the high-production intervals for deep shale gas and the most favorable landing targets for horizontal drilling.Deeps water areas such as Jiaoshiba,Wulong,Luzhou and Changning with deep shale reservoirs over 10 m thickness are the most favorable areas for deep shale gas enrichment.It is recommended to carry out exploration and development practice in deep-water shale gas areas deposited deep with burial depth no more than 5000 m where the geological structure is simple and the shale thickness in the LM1-LM3 graptolite zone is greater than 10 m.It is better to increase the lateral length of horizontal wells,and apply techniques including high intensity of perforations,large volume of proppant,far-field and near-wellbore diversions to maximize the stimulated deep reservoir volume.展开更多
By reviewing the mechanisms of drilling fluid lost circulation and its control in fractured formations, the applicability and working mechanisms of different kinds of lost circulation materials in plugging fractured f...By reviewing the mechanisms of drilling fluid lost circulation and its control in fractured formations, the applicability and working mechanisms of different kinds of lost circulation materials in plugging fractured formations have been summarized. Meanwhile, based on the types of lost circulation materials, the advantages, disadvantages, and application effects of corresponding plugging technologies have been analyzed to sort out the key problems existing in the current lost circulation control technologies. On this basis, the development direction of plugging technology for severe loss have been pointed out. It is suggested that that the lost circulation control technology should combine different disciplines such as geology, engineering and materials to realize integration, intelligence and systematization in the future. Five research aspects should be focused on:(1) the study on mechanisms of drilling fluid lost circulation and its control to provide basis for scientific selection of lost circulation material formulas, control methods and processes;(2) the research and development of self-adaptive lost circulation materials to improve the matching relationship between lost control materials and fracture scales;(3) the research and development of lost circulation materials with strong retention and strong filling in three-dimensional fracture space, to enhance the retention and filling capacities of materials in fractures and improve the lost circulation control effect;(4) the research and development of lost circulation materials with high temperature tolerance, to ensure the long-term plugging effect of deep high-temperature formations;(5) the study on digital and intelligent lost circulation control technology, to promote the development of lost circulation control technology to digital and intelligent direction.展开更多
Self-healing hydrogels have attracted tremendous attention in the field of oil and gas drilling and production engineering because of their excellent self-healing performance after physical damage.In this study,a seri...Self-healing hydrogels have attracted tremendous attention in the field of oil and gas drilling and production engineering because of their excellent self-healing performance after physical damage.In this study,a series of double network self-healing(DN_(SA))hydrogels based on hydrophobic association and ionic bond were prepared for plugging pores and fractures in formations in oil and gas drilling and production engineering.The mechanical,rheological,and self-healing properties of the DN_(SA)hydrogels were investigated.Results revealed that the DN_(SA)hydrogels exhibited excellent mechanical properties with a tensile stress of 0.67 MPa and toughness of 7069 kJ/cm^(3) owing to the synergistic effect of the double network.In addition,the DN_(SA)hydrogels exhibited excellent compression resistance,notch insensitivity,and self-healing properties.The DN_(SA)-2 hydrogel was granulated and made into gel particles with different particle sizes and used as a plugging agent.The self-healing mechanism of DN_(SA)-2 hydrogel particles in fractures was explored,and it’s plugging effect on fractures of different widths and porous media of different permeabilities were investigated.Experimental results revealed that the plugging capacity of the DN_(SA)-2 hydrogel particles for a fracture with width of 5 mm and a porous medium with a permeability of 30μm^(2) was 3.45 and 4.21 MPa,respectively,which is significantly higher than those of commonly used plugging agents in the oilfield.The DN_(SA)hydrogels with excellent mechanical and self-healing properties prepared in this study will provide a new approach for applying hydrogels in oil and gas drilling and production engineering.展开更多
Hydraulic fracture is important in unconventional oil and gas exploration.During the propagation of the hydraulic fracture,the crack tip is blunted due to the development of the process zone in the near-tip area.In th...Hydraulic fracture is important in unconventional oil and gas exploration.During the propagation of the hydraulic fracture,the crack tip is blunted due to the development of the process zone in the near-tip area.In this study,the blunting of the hydraulic fracture in polymethyl methacrylate specimens due to multi-timescale stress concentration is investigated.The ratio of the initiation toughness to the arrest toughness of the blunted hydraulic fracture is measured using both the dynamic and the static methods.Results show that a hydraulic fracture can be blunted with the time span of stress concentration from 1 ms to 600 s.It is also shown that the blunting of hydraulic fracture is a highly localized process.The morphology of the blunted crack depends on the stress distribution in the vicinity of the crack tip.展开更多
基金Supported by the Projects of National Natural Science Foundation of China(52288101,52174014,52374023)。
文摘The research progress of deep and ultra-deep drilling fluid technology systematically reviewed,the key problems existing are analyzed,and the future development direction is proposed.In view of the high temperature,high pressure and high stress,fracture development,wellbore instability,drilling fluid lost circulation and other problems faced in the process of deep and ultra-deep complex oil and gas drilling,scholars have developed deep and ultra-deep high-temperature and high-salt resistant water-based drilling fluid technology,high-temperature resistant oil-based/synthetic drilling fluid technology,drilling fluid technology for reservoir protection and drilling fluid lost circulation control technology.However,there are still some key problems such as insufficient resistance to high temperature,high pressure and high stress,wellbore instability and serious lost circulation.Therefore,the development direction of deep and ultra-deep drilling fluid technology in the future is proposed:(1)The technology of high-temperature and high-salt resistant water-based drilling fluid should focus on improving high temperature stability,improving rheological properties,strengthening filtration control and improving compatibility with formation.(2)The technology of oil-based/synthetic drilling fluid resistant to high temperature should further study in the aspects of easily degradable environmental protection additives with low toxicity such as high temperature stabilizer,rheological regulator and related supporting technologies.(3)The drilling fluid technology for reservoir protection should be devoted to the development of new high-performance additives and materials,and further improve the real-time monitoring technology by introducing advanced sensor networks and artificial intelligence algorithms.(4)The lost circulation control of drilling fluid should pay more attention to the integration and application of intelligent technology,the research and application of high-performance plugging materials,the exploration of diversified plugging techniques and methods,and the improvement of environmental protection and production safety awareness.
文摘Pore pressure is essential data in drilling design,and its accurate prediction is necessary to ensure drilling safety and improve drilling efficiency.Traditional methods for predicting pore pressure are limited when forming particular structures and lithology.In this paper,a machine learning algorithm and effective stress theorem are used to establish the transformation model between rock physical parameters and pore pressure.This study collects data from three wells.Well 1 had 881 data sets for model training,and Wells 2 and 3 had 538 and 464 data sets for model testing.In this paper,support vector machine(SVM),random forest(RF),extreme gradient boosting(XGB),and multilayer perceptron(MLP)are selected as the machine learning algorithms for pore pressure modeling.In addition,this paper uses the grey wolf optimization(GWO)algorithm,particle swarm optimization(PSO)algorithm,sparrow search algorithm(SSA),and bat algorithm(BA)to establish a hybrid machine learning optimization algorithm,and proposes an improved grey wolf optimization(IGWO)algorithm.The IGWO-MLP model obtained the minimum root mean square error(RMSE)by using the 5-fold cross-validation method for the training data.For the pore pressure data in Well 2 and Well 3,the coefficients of determination(R^(2))of SVM,RF,XGB,and MLP are 0.9930 and 0.9446,0.9943 and 0.9472,0.9945 and 0.9488,0.9949 and 0.9574.MLP achieves optimal performance on both training and test data,and the MLP model shows a high degree of generalization.It indicates that the IGWO-MLP is an excellent predictor of pore pressure and can be used to predict pore pressure.
基金Supported by the Key Fund Project of the National Natural Science Foundation of China and Joint Fund of Petrochemical Industry(Class A)(U1762212)National Natural Science Foundation of China(52274009)"14th Five-Year"Forward-looking and Fundamental Major Science and Technology Project of CNPC(2021DJ4402)。
文摘For the analysis of the formation damage caused by the compound function of drilling fluid and fracturing fluid,the prediction method for dynamic invasion depth of drilling fluid is developed considering the fracture extension due to shale minerals erosion by oil-based drilling fluid.With the evaluation for the damage of natural and hydraulic fractures caused by mechanical properties weakening of shale fracture surface,fracture closure and rock powder blocking,the formation damage pattern is proposed with consideration of the compound effect of drilling fluid and fracturing fluid.The formation damage mechanism during drilling and completion process in shale reservoir is revealed,and the protection measures are raised.The drilling fluid can deeply invade into the shale formation through natural and induced fractures,erode shale minerals and weaken the mechanical properties of shale during the drilling process.In the process of hydraulic fracturing,the compound effect of drilling fluid and fracturing fluid further weakens the mechanical properties of shale,results in fracture closure and rock powder shedding,and thus induces stress-sensitive damage and solid blocking damage of natural/hydraulic fractures.The damage can yield significant conductivity decrease of fractures,and restrict the high and stable production of shale oil and gas wells.The measures of anti-collapse and anti-blocking to accelerate the drilling of reservoir section,forming chemical membrane to prevent the weakening of the mechanical properties of shale fracture surface,strengthening the plugging of shale fracture and reducing the invasion range of drilling fluid,optimizing fracturing fluid system to protect fracture conductivity are put forward for reservoir protection.
基金the National Natural Science Foundation of China(No.52204023)China Postdoctoral Science Foundation(2022M713465)Postdoctoral Innovation Talent Support of Shandong Province(SDBX2022033)。
文摘During ultradeep oil and gas drilling,fluid loss reducers are highly important for water-based drilling fluids,while preparing high temperature-and salt-resistance fluid loss reducers with excellent rheology and filtration performance remains a challenge.Herein,a micro-crosslinked amphoteric hydrophobic association copolymer(i.e.,DADC)was synthesized using N,N-dimethyl acrylamide,diallyl dimethyl ammonium chloride,2-acrylamido-2-methylpropane sulfonic acid,hydrophobic monomer,and pentaerythritol triallyl ether crosslinker.Due to the synergistic effects of hydrogen bonds,electrostatic interaction,hydrophobic association,and micro-crosslinking,the DADC copolymer exhibited outstanding temperature-and salt-resistance.The rheological experiments have shown that the DADC copolymer had excellent shear dilution performance and a certain degree of salt-responsive viscosity-increasing performance.The DADC copolymer could effectively adsorb on the surface of bentonite particles through electrostatic interaction and hydrogen bonds,which bring more negative charge to the bentonite,thus improving the hydration and dispersion of bentonite particles as well as the colloidal stability of the drilling fluids.Moreover,the drilling fluids constructed based on the DADC copolymer exhibited satisfactory rheological and filtration properties(FLHTHP=12 m L)after aging at high temperatures(up to200℃)and high salinity(saturated salt)environments.Therefore,this work provided new insights into designing and fabricating high-performance drilling fluid treatment agents,demonstrating good potential applications in deep and ultradeep drilling engineering.
基金The authors gratefully acknowledge the financial support received from the Strategic Cooperation Technology Projects of CNPC and CUPB(No.ZLZX2020-01)the National Key Scientific Research Instrument Research Project of NSFC(No.51827804).
文摘Radial borehole fracturing that combines radial boreholes with hydraulic fracturing is anticipated to improve the output of tight oil and gas reservoirs.This paper aims to investigate fracture propagation and pressure characteristics of radial borehole fracturing in multiple layers.A series of laboratory experiments with artificial rock samples(395 mm×395 mm×395 mm)was conducted using a true triaxial fracturing device.Three crucial factors corresponding to the vertical distance of adjacent radial borehole layers(vertical distance),the azimuth and diameter of the radial borehole are examined.Experimental results show that radial borehole fracturing in multiple layers generates diverse fracture geometries.Four types of fractures are identified based on the connectivity between hydraulic fractures and radial boreholes.The vertical distance significantly influences fracture propagation perpendicular to the radial borehole axis.An increase in the vertical distance impedes fracture connection across multiple radial borehole layers and reduces the fracture propagation distance along the radial borehole axis.The azimuth also influences fracture propagation along the radial borehole axis.Increasing the azimuth reduces the guiding ability of radial boreholes,which makes the fracture quickly curve to the maximum horizontal stress direction.The breakdown pressure correlates with diverse fracture geometries observed.When the fractures connect multi-layer radial boreholes,increasing the vertical distance decreases the breakdown pressure.Decreasing the azimuth and increasing the diameter also decrease the breakdown pressure.The extrusion force exists between the adjacent fractures generated in radial boreholes in multiple rows,which plays a crucial role in enhancing the guiding ability of radial boreholes and results in higher breakdown pressure.The research provides valuable theoretical insights for the field application of radial borehole fracturing technology in tight oil and gas reservoirs.
基金This research was financially supported by the Scientific and technological research projects in Sichuan province(Grant Nos.2022YFSY0007 and 2021YFH0010)the National Scientific Science Foundation of China(Grant No.U20A20266).
文摘To investigate the specific creep behavior of ultra-deep buried salt during oil and gas exploitation,a set of triaxial creep experiments was conducted at elevated temperatures with constant axial pressure and unloading confining pressure conditions.Experimental results show that the salt sample deforms more significantly with the increase of applied temperature and deviatoric loading.The accelerated creep phase is not occurring until the applied temperature reaches 130℃,and higher temperature is beneficial to the occurrence of accelerated creep.To describe the specific creep behavior,a novel three-dimensional(3D)creep constitutive model is developed that incorporates the thermal and mechanical variables into mechanical elements.Subsequently,the standard particle swarm optimization(SPSO)method is adopted to fit the experimental data,and the sensibility of key model parameters is analyzed to further illustrate the model function.As a result,the model can accurately predict the creep behavior of salt under the coupled thermo-mechanical effect in deep-buried condition.Based on the research results,the creep mechanical behavior of wellbore shrinkage is predicted in deep drilling projects crossing salt layer,which has practical implications for deep rock mechanics problems.
基金supported by the National Natural Science Foundation of China(Nos.52074249,U1663206,52204069)Fundamental Research Funds for the Central Universities。
文摘Nanoparticles(NPs)have gained significant attention as a functional material due to their ability to effectively enhance pressure reduction in injection processes in ultra-low permeability reservoirs.NPs are typically studied in controlled laboratory conditions,and their behavior in real-world,complex environments such as ultra-low permeability reservoirs,is not well understood due to the limited scope of their applications.This study investigates the efficacy and underlying mechanisms of NPs in decreasing injection pressure under various injection conditions(25—85℃,10—25 MPa).The results reveal that under optimal injection conditions,NPs effectively reduce injection pressure by a maximum of 22.77%in core experiment.The pressure reduction rate is found to be positively correlated with oil saturation and permeability,and negatively correlated with temperature and salinity.Furthermore,particle image velocimetry(PIV)experiments(25℃,atmospheric pressure)indicate that the pressure reduction is achieved by NPs through the reduction of wall shear resistance and wettability change.This work has important implications for the design of water injection strategies in ultra-low permeability reservoirs.
文摘On the basis of reviewing the development history of drilling engineering technology over a century, this paper describes the technical and scientific background of downhole control engineering, discusses its basic issues, discipline frame and main study contents, introduces the research progress of downhole control engineering in China over the past 30 years, and envisions the development direction of downhole control engineering in the future. The author proposed the study subject of well trajectory control theory and technology in 1988, and further proposed the concept of downhole control engineering in 1993. Downhole control engineering is a discipline branch, which applies the perspectives and methods of engineering control theory to solve downhole engineering control issues in oil and gas wells; meanwhile, it is an application technology field with interdisciplinarity. Downhole control engineering consists of four main aspects; primarily, investigations about dynamics of downhole system and analysis methods of control signals; secondly, designs of downhole control mechanisms and systems, research of downhole parameters collections and transmission techniques; thirdly, development of downhole control engineering products; fourthly, development of experimental methods and the laboratories. Over the past 30 years, the author and his research group have achieved a number of progress and accomplishments in the four aspects mentioned above. As a research field and a disciplinary branch of oil and gas engineering, downhole control engineering is stepping into a broader and deeper horizon.
基金This research is financially supported by the National Natural Science Foundation of China(Grant 52074327,52288101)the Natural Science Foundation of Shandong Province,China(ZR2020QE107).
文摘The excellent mechanical properties of supramolecular gel could adapt to the complex reservoir environment and had broad application prospects in the field of oil and gas drilling and production engineering.In this paper,a supramolecular gel based on hydrophobic association and hydrogen bonding was prepared by micellar copolymerization,which could be used to plug fractures and pores in formations.Supramolecular gel was a gel network system with high performance characteristics formed by self-assembly of non-covalent bond interaction.The rheological properties,mechanical mechanics,temperature resistance and swelling ability of supramolecular gel were studied.The results showed that the supramolecular gel had a dense three-dimensional network structure with open and interconnected pore structures,which could exhibit good rheological properties and strong viscoelastic recovery ability.The mechanical properties of the supramolecular gel were excellent,it had a tensile stress of 0.703 MPa and an elongation at break of 1803%.When the compressive strain was 96%,the compressive stress could reach 14.5 MPa.Supramolecular gel also showed good temperature resistance and swelling properties.At the aging temperature of 135℃,supramolecular gels still maintained good gel strength,and it only took 12 h to reach the equilibrium swelling ratio of 35.87 in 1%NaCl solution.It was also found that supramolecular gel in low concentration saline(1%NaCl solution)showed relatively faster swelling than high concentration saline(25%NaCl solution).The swelling process of the supramolecular gel was non-Fick diffusion(typeⅡ).This indicated that the organic/inorganic permeability network was well formed.Therefore,the diffusion rate of small molecules could be guaranteed to be equal to the relaxation rate of large molecules before and after the phase transition temperature.In addition to the diffusion of water molecules,the swelling process of the supramolecular gel was also affected by the relaxation of gel network and polymer chain segment,the interaction between water molecules and polymer network and the groups of polymer network and other factors.Supramolecular gel particles could be used as plugging materials for drilling fluids,which had excellent ability to plug formation fractures and pores.The plugging ability of the supramolecular gel was up to 6.7 MPa for 0.5 mm fracture width,and 9.6 MPa for porous media with 5 mD permeability.Compared with HT-PPG gel particles commonly used in oil fields,supramolecular gel particles had better plugging ability on fractures and porous media.The development and application of supramolecular gel had far-reaching significance for promoting the functional application of polymer materials in drilling and production engineering.
基金The authors wish to acknowledge the Open Foundation of Cooperative Innovation Center of Unconventional Oil and Gas,Yangtze University(Ministry of Education&Hubei Province),(Item No.UOGBX2022-04,UOG2022-26,UOGBX2022-05)the National Natural Science Foundation of China"New method and control mechanism of surface rotary steering drilling"(Item No.51974035,U1262108,U1762214)the key R&D program of Hubei Province"Development and application of multi-dimensional power integrated drilling tools for intelligent drilling"(Item No.2020BAB055)for the financial support to this paper。
文摘A high-quality plug of the abandoned wellbore is considered an essential technical aspect of the oil and gas well abandonment technology system. This paper presents a method of active mechanical excitation to enhance the quality of wellbore plug barriers. An indoor simulation platform is developed, and the effects of different combinations of vibration frequency, amplitude and duration on the properties of the wellbore plug cement material are investigated. It is observed that the optimal combination of excitation parameters occurs at a vibration frequency of 15 Hz, a vibration time of 6 min, and a vibration amplitude of 3 mm. Compared with the condition without the vibration process, the cementing strength, compressive strength, and tensile strength of wellbore cement plug with the optimal mechanical vibration process could increase by 51%, 38% and 20%, respectively, while the porosity decreases by 5%. As determined by scanning electron microscopy of the set cement's microstructure, mechanical vibration effectively eliminates internal porosity and improves the set cement's density. The optimal excitation parameters obtained from the test can guide the design of the vibration plugging tool. The designed vibration plugging tool is simulated in the near field. The cement plug cementation quality tester tests the vibrating and non-vibrating samples, and the cementation ratio is calculated. The test results show that the average cementation ratio of vibrating samples is 0.89375, and that of non-vibrating samples is 0.70625, and the cementation quality is improved by 27%. It is concluded that it not only provides essential data for the design of mechanical vibration plug apparatus, on-site vibration plugs, and the development of operational specifications for vibration plugs, but also provides solid engineering guidance.
基金financially supported by National Natural Science Foundation of China(No.52074330)National Natural Science Foundation of China Major Projects(No.51991361).
文摘With the exploration and development of deep and ultra-deep oil and gas,high torque and high friction during the drilling of deep and ultra-deep wells become one of the key issues affecting drilling safety and drilling speed.Meanwhile,the high temperature and high salt problem in deep formations is prominent,which poses a major challenge to the lubricity of drilling fluids under high temperature and high salt.This paper reports an organic borate ester SOP as an environmentally friendly drilling fluid lubricant.The performance evaluation results show that when 1%lubricant SOP is added to the fresh water-based mud,the lubrication coefficient decreases from 0.631 to 0.046,and the reduction rate of lubrication coefficient is 92.7%.Under the conditions of 210℃ and 30%NaCl,the reduction rate of lubricating coefficient of the base slurry with 1%SOP was still remain 81.5%.After adding 1%SOP,the wear volume decreased by 94.11%compared with the base slurry.The contact resistance experiment during the friction process shows that SOP can form a thick adsorption film on the friction surface under high temperature and high salt conditions,thus effectively reducing the friction resistance.Molecular dynamics simulation shows that lubricant SOP can be physically adsorbed on the surface of drilling tool and borehole wall through hydrogen bond and van der Waals force.XPS analysis further shows that SOP adsorbs on the friction surface and reacts with metal atoms on the friction surface to form a chemically reactive film.Therefore,under high temperature and high salt conditions,the synergistic effect of physical adsorption film and chemical reaction film effectively reduces the frictional resistance and wear of the friction surface.In addition,SOP is non-toxic and easy to degrade.Therefore,SOP is a highly effective and environmentally friendly lubricant in high temperature and high salt drilling fluid.
基金Supported by National Natural Science Foundation of China(51991361,52074327)Major Engineering Technology Field Test Project of CNPC(2020F-45)。
文摘By summarizing the composition,classification,and performance characterization of functional adhesive materials,the adhesion mechanisms of functional adhesive materials,such as adsorption/surface reaction,diffusion,mechanical interlocking,and electrostatic adsorption,are expounded.The research status of these materials in oil and gas drilling and production engineering field such as lost circulation prevention/control,wellbore stabilization,hydraulic fracturing,and profile control and water plugging,and their application challenges and prospects in oil and gas drilling and production are introduced comprehensively.According to the applications of functional adhesive materials in the field of oil and gas drilling and production at this stage,the key research directions of functional adhesive materials in the area of oil and gas drilling and production are proposed:(1)blending and modifying thermoplastic resins or designing curable thermoplastic resins to improve the bonding performance and pressure bearing capacity of adhesive lost circulation materials;(2)introducing low-cost adhesive groups and positive charge structures into polymers to reduce the cost of wellbore strengthening agents and improve their adhesion performance on the wellbore;(3)introducing thermally reversible covalent bond into thermosetting resin to prevent backflow of proppant and improve the compressive strength of adhesive proppant;(4)introducing thermally reversible covalent bonds into thermoplastic polymers to improve the temperature resistance,salt-resistance and water shutoff performance of adhesive water shutoff agents.
基金The authors express their appreciation to National Key Research and Development Project“Key Scientific Issues of Revolutionary Technology”(2019YFA0708300)Strategic Cooperation Technology Projects of CNPC and CUPB(ZLZX2020-03)+1 种基金Distinguished Young Foundation of National Natural Science Foundation of China(52125401)Science Foundation of China University of Petroleum,Beijing(2462022SZBH002).
文摘Many scholars have focused on applying machine learning models in bottom hole pressure (BHP) prediction. However, the complex and uncertain conditions in deep wells make it difficult to capture spatial and temporal correlations of measurement while drilling (MWD) data with traditional intelligent models. In this work, we develop a novel hybrid neural network, which integrates the Convolution Neural Network (CNN) and the Gate Recurrent Unit (GRU) for predicting BHP fluctuations more accurately. The CNN structure is used to analyze spatial local dependency patterns and the GRU structure is used to discover depth variation trends of MWD data. To further improve the prediction accuracy, we explore two types of GRU-based structure: skip-GRU and attention-GRU, which can capture more long-term potential periodic correlation in drilling data. Then, the different model structures tuned by the Bayesian optimization (BO) algorithm are compared and analyzed. Results indicate that the hybrid models can extract spatial-temporal information of data effectively and predict more accurately than random forests, extreme gradient boosting, back propagation neural network, CNN and GRU. The CNN-attention-GRU model with BO algorithm shows great superiority in prediction accuracy and robustness due to the hybrid network structure and attention mechanism, having the lowest mean absolute percentage error of 0.025%. This study provides a reference for solving the problem of extracting spatial and temporal characteristics and guidance for managed pressure drilling in complex formations.
基金The project is supported by CNPC Key Core Technology Research Projects(2022ZG06)received by Qing Wangproject funded by China Postdoctoral Science Foundation(2021M693508)received by Qing Wang.Basic Research and Strategic Reserve Technology Research Fund Project of Institutes directly under CNPC received by Qing Wang.
文摘Sticking is the most serious cause of failure in complex drilling operations.In the present work a novel“early warning”method based on an artificial intelligence algorithm is proposed to overcome some of the known pro-blems associated with existing sticking-identification technologies.The method is tested against a practical case study(Southern Sichuan shale gas drilling operations).It is shown that the twelve sets of sticking fault diagnostic results obtained from a simulation are all consistent with the actual downhole state;furthermore,the results from four groups of verification samples are also consistent with the actual downhole state.This shows that the pro-posed training-based model can effectively be applied to practical situations.
基金the support from the National Science and Technology Major Projects of China(Grant No.2016ZX05066)Major Program of National Natural Science Foundation of China(Grant No.51490650)PetroChina Innovation Foundation(No.2018D-5007-0307)
文摘Whether hydraulic fractures could connect multiple gas zones in the vertical plane is the key to fracturing treatment to jointly exploit coalbed methane and tight sandstone gas through integrative hydraulic fracturing in tight sandstone–coal interbedded formations. Laboratory true triaxial hydraulic fracturing experiments were conducted on layered specimens with di erent combination types of natural sandstone and coal to simulate the propagation behavior of hydraulic fractures. The effects of the fracture initiation position, fracturing fluid viscosity and injection rate were discussed. The results showed that di erent fracture morphologies could be found. When initiating from coal seams, three patterns of fracture initiation and propagation were obtained:(1) The main hydraulic fracture initiated and propagated along the natural fractures and then diverged due to the effects of in situ stress and formed secondary fractures.(2) The hydraulic fracture initiated and propagated in the direction of the maximum horizontal stress.(3) Multiple fractures initiated and propagated at the same time. With the same fracturing fluid viscosity and injection rate, the hydraulic fractures initiating in sandstones had greater chances than those in coal seams to penetrate interfaces and enter neighboring layers. Excessively small or large fracturing fluid viscosity and injection rate would do harm to the vertical extension height of the induced fracture and improvement of the stimulated reservoir volume. Compared with operation parameters(fracturing fluid viscosity and injection rate), the natural weak planes in coals were considered to be the key factor that a ected the fracture propagation path. The experimental results would make some contributions to the development of tight sandstone–coal interbedded reservoirs.
基金financially supported by the Natural Science Foundation of China(Grants 51904328)the Natural Science Foundation of China(Grants U1762212)Fundamental Research Funds for the Central Universities(Grants 27R1702031A)
文摘Drilling fluids face failure during drilling deep reservoir with high temperature and high salt.The experimental results show that high temperature and salinity reduce the negative charge on the surface of bentonite in the drilling fluid and cause the coalescence of bentonite particles.As a result,the particles coalesce,the grid structure is destroyed,and the rheological properties,rock-carrying capacity and filtration properties are lost.To resolve the foregoing,in this study,0.05-wt%carbon nanotubes are introduced into a 4%bentonite drilling fluid under conditions where the temperature and concentration of added Na Cl reach 180°C and 10 wt%,respectively.The carbon nanotubes adsorb on the bentonite surface and increase the space among bentonite particles.The steric hindrance prevents the coalescence of bentonite in high temperature and high salt environment.Thus bentonite maintains the small size distribution of bentonite and supports the bentonite grid structure in the drilling fluid.As a result,the rock-carrying capacity of the drilling fluid increases by 85.1%.Moreover,the mud cake formed by the accumulation of small-sized bentonite particles is dense;consequently,the filtration of bentonite drilling fluid reduced by 30.2%.
基金Supported by the National Natural Science Foundation of China(41872124,42130803)Sinopec Key Scientific and Technological Project(P20046)。
文摘The enrichment characteristics of deep shale gas in the Ordovician Wufeng-Silurian Longmaxi formations in the Sichuan Basin and its surrounding areas are investigated through experiments under high temperature and high pressure,including petrophysical properties analyses,triaxial stress test and isothermal adsorption of methane experiment.(1)The deep shale reservoirs drop significantly in porosity and permeability compared with shallower shale reservoirs,and contain mainly free gas.(2)With higher deviatoric stress and axial strain,the deep shale reservoirs have higher difficulty fracturing.(3)Affected by structural location and morphology,fracture characteristics,geofluid activity stages and intensity,deep shale gas reservoirs have more complicated preservation conditions.(4)To achieve the commercial development of deep shale gas reservoirs,deepening geological understanding is the basis,and exploring reservoir simulation technology befitting the geological features is the key.(5)The siliceous shale and limestone-bearing siliceous shale in the Metabolograptus persculptus-Parakidograptus acuminatus zones(LM1-LM3 graptolite zones)are the high-production intervals for deep shale gas and the most favorable landing targets for horizontal drilling.Deeps water areas such as Jiaoshiba,Wulong,Luzhou and Changning with deep shale reservoirs over 10 m thickness are the most favorable areas for deep shale gas enrichment.It is recommended to carry out exploration and development practice in deep-water shale gas areas deposited deep with burial depth no more than 5000 m where the geological structure is simple and the shale thickness in the LM1-LM3 graptolite zone is greater than 10 m.It is better to increase the lateral length of horizontal wells,and apply techniques including high intensity of perforations,large volume of proppant,far-field and near-wellbore diversions to maximize the stimulated deep reservoir volume.
基金Supported by National Natural Science Foundation of China(51991361,52074327,U1762212)Major Engineering Technology Field Tes Project of CNPC(2020F-45)。
文摘By reviewing the mechanisms of drilling fluid lost circulation and its control in fractured formations, the applicability and working mechanisms of different kinds of lost circulation materials in plugging fractured formations have been summarized. Meanwhile, based on the types of lost circulation materials, the advantages, disadvantages, and application effects of corresponding plugging technologies have been analyzed to sort out the key problems existing in the current lost circulation control technologies. On this basis, the development direction of plugging technology for severe loss have been pointed out. It is suggested that that the lost circulation control technology should combine different disciplines such as geology, engineering and materials to realize integration, intelligence and systematization in the future. Five research aspects should be focused on:(1) the study on mechanisms of drilling fluid lost circulation and its control to provide basis for scientific selection of lost circulation material formulas, control methods and processes;(2) the research and development of self-adaptive lost circulation materials to improve the matching relationship between lost control materials and fracture scales;(3) the research and development of lost circulation materials with strong retention and strong filling in three-dimensional fracture space, to enhance the retention and filling capacities of materials in fractures and improve the lost circulation control effect;(4) the research and development of lost circulation materials with high temperature tolerance, to ensure the long-term plugging effect of deep high-temperature formations;(5) the study on digital and intelligent lost circulation control technology, to promote the development of lost circulation control technology to digital and intelligent direction.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.52074327 and 51991361)。
文摘Self-healing hydrogels have attracted tremendous attention in the field of oil and gas drilling and production engineering because of their excellent self-healing performance after physical damage.In this study,a series of double network self-healing(DN_(SA))hydrogels based on hydrophobic association and ionic bond were prepared for plugging pores and fractures in formations in oil and gas drilling and production engineering.The mechanical,rheological,and self-healing properties of the DN_(SA)hydrogels were investigated.Results revealed that the DN_(SA)hydrogels exhibited excellent mechanical properties with a tensile stress of 0.67 MPa and toughness of 7069 kJ/cm^(3) owing to the synergistic effect of the double network.In addition,the DN_(SA)hydrogels exhibited excellent compression resistance,notch insensitivity,and self-healing properties.The DN_(SA)-2 hydrogel was granulated and made into gel particles with different particle sizes and used as a plugging agent.The self-healing mechanism of DN_(SA)-2 hydrogel particles in fractures was explored,and it’s plugging effect on fractures of different widths and porous media of different permeabilities were investigated.Experimental results revealed that the plugging capacity of the DN_(SA)-2 hydrogel particles for a fracture with width of 5 mm and a porous medium with a permeability of 30μm^(2) was 3.45 and 4.21 MPa,respectively,which is significantly higher than those of commonly used plugging agents in the oilfield.The DN_(SA)hydrogels with excellent mechanical and self-healing properties prepared in this study will provide a new approach for applying hydrogels in oil and gas drilling and production engineering.
基金the support from the China National Science and Technology Major Project"Changning-Weiyuan shale gas development demonstration project"(2016ZX05062)the support from the China National Petroleum Corporation:"Research on Influencing Factors of Gas Hydrate Sand Production and Experimental Design"(No.CPETQ201921)。
文摘Hydraulic fracture is important in unconventional oil and gas exploration.During the propagation of the hydraulic fracture,the crack tip is blunted due to the development of the process zone in the near-tip area.In this study,the blunting of the hydraulic fracture in polymethyl methacrylate specimens due to multi-timescale stress concentration is investigated.The ratio of the initiation toughness to the arrest toughness of the blunted hydraulic fracture is measured using both the dynamic and the static methods.Results show that a hydraulic fracture can be blunted with the time span of stress concentration from 1 ms to 600 s.It is also shown that the blunting of hydraulic fracture is a highly localized process.The morphology of the blunted crack depends on the stress distribution in the vicinity of the crack tip.